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ABSTRACT 

Plant genetic engineering as a group of technologies and methods that lets scientists 

change the DNA of many organisms, including plants, bacteria, and animals, covers such 

methods as biolistic transformation, microinjection, Agrobacterium-mediated transformation. 
The monograph includes the information about some aspects of the genetic transformation 
of plants using Agrobacterium rhizogenes soil bacteria: characteristics of the bacteria, role 
of Ri-plasmids in horizontal gene transfer in nature, plant – Agrobacterium interaction, 
effect of rol genes on plant secondary metabolism etc. There is also the data about hairy 
roots induction, their characteristics, cultivation and using as producers of valuable 
bioactive compounds.  

The book is designed for a wide range of specialists in the field of plant 
biotechnology, genetic engineering, biochemistry, and plant physiology. The book can be 
used by students of biological and agricultural faculties as a study guide and a source of 
information for the preparation of essays and dissertations. It can also be of interest to all 
readers who want to have knowledge of new achievements in biological science and their 
practical application.  

KEYWORDS 

 Bacteria-plant interaction, genetic engineering, plant biotechnology, hairy roots, 
human health, bioactive compounds. 
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PREFACE 

In this book, you can read about some aspects of the interaction between plants and 
microorganisms and the possibility of using such interaction. The plants surround us 
everywhere. They are near your house. They greet you every morning when you look out 
the window. They accompany you on your way to the university or office. They welcome 
you on your day off when you are relaxing. Plants give people oxygen and food, clothes, 
feed, and energy.  

You know that microorganisms are all around us. These are small inhabitants of our 
planet. There are many of them around, but we often do not even guess they are our 
neighbors. They are very different. Some microorganisms are friendly to humans. They can 
also be friends with plants. These miniature creatures help plants grow, survive natural 
disasters, and increase productivity. People have learned to use "friendly" microorganisms 
for themselves and plants. 

You will learn what hairy roots are, why they are hairy, how they are formed, and 
how they can be used for human benefit. You can see that they are very different, but all of 
them are a source of valuable biologically active compounds and can be used in treating of 
people. 
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INTRODUCTION 

Plant genetic engineering is one of the modern directions in science today. It 
involves the possibility of using various tools of plant genome changing. For example, such 
methods include biolistic transformation, the microinjection method, as well as the use of 
bacteria of the Agrobacterium genus.  

The last method includes the cocultivation of plant parts (leaves, stems, roots, 
internodes, petioles, and even flowers) with a suspension of Agrobacterium tumefaciens 
and A. rhizogenes. These bacteria are soil microorganisms that have a natural ability to 
infect plants and transfer part of their genome (specific genes) to the plants. Thanks to 
such features of these microorganisms, it was possible to develop a method of plant genetic 
transformation.  

A. tumefaciens are used to obtain transgenic plants, and A. rhizogenes are used to
obtain transgenic roots (so-called hairy roots). Hairy roots can be cultivated for an 
unlimited long period, synthesize plant-specific compounds in an amount that significantly 
exceeds the amount in the mother plants, and synthesize compounds of mammalian or 
bacterial origin by transferred genes. 

Works using genetic engineering are aimed to change plants to increase their 
resistance to the effects of negative factors of the environment. In addition, this method 
allows to change the metabolism of cells, stimulates the synthesis of specific plant 
components or compounds that are not typical for plants. Thus, transformed plants or 
hairy roots can be a source of compounds with medicinal properties and used as 
pharmaceutical biofactories. That is why research on the genetic transformation of 
medicinal plants that synthesize biologically active compounds can attract special 
attention. 

The work of the authors of this book for many years was aimed at developing 
methods of genetic transformation of medicinal plants to obtain hairy roots, make a 
collection of transformed plant roots of various species, conduct a comprehensive 
fundamental study of the collection samples to find out the specifics of the effect of 
transformation and gene transfer on the functioning of cells plants, as well as on the 
development of methods for obtaining hairy roots with a high content of valuable 
compounds for their possible use as bioproducers of medical compounds.  

The collection of hairy roots includes such species as Artemisia annua, A. vulgaris, A, 
dracunculus, A. tilesii, Althaea officinalis, Cichorium intybus, Bidens pilosa, and others 
(https://plants.usda.gov/). The conducted studies were related to the determination of the 
features of the functioning of the plant antioxidant protection system (for example, the 
activity of the superoxide dismutase enzyme), the level of antioxidant and reducing 
activity, the synthesis of such compounds as flavonoids, sugars, artemisinin. The research 
was also focused on the possibility of using extracts from hairy roots (for metal 
nanoparticle synthesis, in particular). 

Such studies using a unique collection of hairy roots make it possible to 
comprehensively assess the influence of genes transferred during transformation on the 
functioning of plant cells. In addition, such studies make it possible to obtain samples of 
hairy roots as a result of genetic transformation, which can be used as a source of a 
complex of biologically active compounds with medicinal properties for their use in the 
pharmaceutical industry. 
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1. THEORETICAL BACKGROUND AND CURRENT STATE OF PLANT GENETIC
TRANSFORMATION RESEARCH AND SELECTED TRENDS OF PRACTICAL APPLICATION 

1.1. Agrobacterium rhizogenes: role in nature and use in biotechnology 

Attempts to understand the possibility of plant transformation date back almost a 
century. This became possible thanks to agrobacteria capable of transferring their T-DNA 
into the plant genome. Thus, agrobacterial transformation initiated the genetic engineering 
of plants as such. It is the oldest and the most common method of plant transformation, 
which remained almost unchanged since the 1970s, because the technique is very simple 
and easy to reproduce. 

The history of agrobacterial transformation can be presented in the following stages 
(Somssich, 2019):  

a) research on crown gall disease (1892 – 1966);
b) determination of the meaning of agrobacterial transformation (1967 – 1976);
c) attempts to create the first transgenic plants (1977 – 1986);
d) the beginning of biotechnology as an industry (1980 – 2005);
e) development and simplification of biotechnological methods (1987 – now).

At first, scientists noticed the fleshy outgrowths on the crown roots of different fruit trees 
in the late 19th century. The name “crown gall” was chosen in 1892 to describe these tumor-like 
outgrowths, and Erwin Smith was the first scientist to speculate that bacteria could be the cause 
of these tumor formations. He published his review on the current state of knowledge in the field 
in 1896. However, the idea that bacteria could infect plants was seen as outrageous and non-
scientific by many reputable experts in microbiology at the time, such as Alfred Fischer. Despite 
that, Smith continued his research and published new data to support his idea in 1907 and 1912. 
Again, he was the first scientist to describe the causative agent of what he called “plant cancer” – 
Bacterium tumefaciens. Alas, this idea was not readily accepted within the field as well. At the 
same time, another plant disease was studied – a hairy root disease (Srivastava & Srivastava, 
2007). Its name was first introduced in the literature by Steward et al. in 1900. Later, Riker et al. 
(1930) described and named its causative microorganism Phytomonas rhizogenes, which was 
later renamed Agrobacterium rhizogenes.  

The next breakthrough came in 1941 when Philip White and Armin Braun demonstrated 
the possibility to culture explants from crown gall tumors. While these explants retained a 
tumor-like growth, scientists were unable to isolate the causative bacteria, Phytomonas 
tumefaciens, from the tissue (final re-classification as Agrobacterium tumefaciens was in 1942). 
Armin Braun speculated that DNA might be involved, and continued his research over the next 
30 years. He established tumor lines growing on hormone-free medium for decades. His 
pioneering work earned him the title “Godfather of Crown Gall Research”. However, the nature of 
plant transformation in the 1940 – 1960s was still unknown. 

In 1967 Rob Schilperoort and colleagues synthesized a short RNA strand from a 
complementary agrobacterial DNA sequence they had isolated from a cultured Nicotiana 
tumor. This DNA sequence was found only in Agrobacterium tumefaciens, but not in healthy 
Nicotiana plants that indicated that bacterial DNA had indeed been transferred into the 
plant cell. Other scientists, such as Jeff Schell Marc van Montagu, Mary-Dell Chilton, and 
Allen Kerr continued the research. The Schell/van Montagu lab published an article in 1974 
that was the first major contribution on the way toward identifying the “tumor-inducing 
principle”. They identified the large plasmid that could only be found in oncogenic tumor-
inducing A. tumefaciens strains. Next year, they transferred the plasmid to a non-oncogenic 
Agrobacterium strain and demonstrated that this strain gained the ability to induce tumors. 
They called this plasmid Tumor-inducing (Ti)-plasmid.  
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Simultaneously, A. rhizogenes was studied. Its ability to induct the hairy roots was 
accepted and supported by many researchers. The first directed transformation of higher 
plants (Nicotiana tabacum) using A. rhizogenes was made by Ackermann in 1973 and 
published in 1977 (Ackermann, 1977).  

In 1980 Schell and van Montagu concluded that only a region of Ti-plasmid DNA is 
incorporated into the plant genome. This region was called T-DNA (Transport-DNA). In 
1981, the Schilperoort, Schell/van Montagu, and Nester labs all published on Ti-plasmid 
mutants carrying insertions in different regions of the T-DNA. In 1983, Chilton lab 
published the successful regeneration of healthy Nicotiana tabacum plants carrying a full-
length engineered agrobacterial T-DNA. Thus, the race ended and genetic engineering of 
plants via Agrobacterium-mediated transformation started all over the world. 

Since then, both species of agrobacteria are used for the genetic transformation of 
plants and are called “natural genetic engineers” due to their ability to incorporate T-DNA 
of Ti- (tumor-inducing) or Ri- (root-inducing) plasmid into the plant genome (Fig. 1). 
Obtained crown galls and hairy roots are the formations with characteristic appearance 
(see PlantDiseases.org. Hairy root and crown gall diseases) and ability to produce opines 
(their synthesis is coded by genes included in T-DNA) – amino acid derivatives that 
agrobacteria “feed on”. That is why these bacteria are phytopathogens in nature. 

In Agrobacterium-mediated transformation, each incorporations of T-DNA into a 
plant cell is an independent transformational event. Thus, using this method of genetic 
engineering, it is possible to quickly obtain a broad spectrum of new transformant lines 
with enhanced or completely new characteristics, different from control plants. Moreover, 
hairyroot cultures show rapid biomass increase, growth on hormone-free media, and 
enhanced secondary metabolism due to transferred rol genes. For an even greater yield of 
the metabolites of interest, it is possible to change the metabolic pathways of the 
biosynthesis of compounds by transferring additional genes and CRISPR/Cas methods. In 
addition to secondary metabolites, recombinant proteins are also obtained in this way 
today. All this information will be discussed in this chapter of the book. 

1.2. Agrobacterium rhizogenes in the nature 

Agrobacterium rhizogenes (Riker et al. 1930) Conn 1942 is a member of the 
Alphaproteobacteria class, Rhizobiaceae family. Its homotypic synonyms (NCBI database, 
2023) are Rhizobium rhizogenes (Riker et al. 1930, Young et al. 2001), Agrobacterium 
genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, 
Agrobacterium biovar 2. The latter is related to the alternative special purpose 
nomenclature (Garrity, 2005). It involves naming strains according to their pathogenic 
character, such as A. tumefaciens, A. rhizogenes, or A. radiobacter for tumorigenic (carrying 
Ti plasmids), rhizogenic (carrying Ri plasmids), and nonpathogenic strains, respectively, 
and therefore classifying them as Agrobacterium biovar 2. 

The genus name “Agrobacterium” is comprised of two parts: “agros” (Greek noun “a 
field”) and “bakterion” (Greek noun “a small rod”), i.e. “a small field rod”. Another genus 
name “Rhizobium” is comprised of two parts as well: “rhiza” (Greek noun “a root”) and 
“bios” (Greek noun “life”), i.e. “living in a root”. The species name “rhizogenes” is comprised 
of two words: “rhiza” (Greek noun “a root”) and “gennao” (Greek verb “to make, to 
produce”), i.e. “root-producing”. It is an intrinsic feature of these bacteria as carriers of Ri-
plasmids, which, in turn, cause hairy root disease in wounded plants. Pathogenic A. 
rhizogenes strains have a wide, and perhaps complex, host range that will be discussed 
further. 
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The status of A. rhizogenes as an authentic species in the genus Rhizobium is 
supported by numerical analysis of nutritional and biochemical data and comparative 16S 
rDNA sequence analysis (Garrity, 2005). 

 
Figure 1 – Agrobacterium rhizogenes and A. tumefaciens can cause plant diseases 
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1.3. Characteristics of Agrobacterium rhizogenes  
from Bergey Manual of Systematic Bacteriology (Garrity, 2005, Volume 2, part C) 

 
General characteristics. A. rhizogenes are Gram-negative aerobic nonsporeforming 

bacteria in a rod shape, 0.5–1.0 x 1.2–3.0 μm in size (see SANBI site – South African 
National Biodiversity Institute. Rhizobium rhizogenes). They are motile and have 1–4 
peritrichous flagella. The optimal temperature for growth is 25–28°C; they do not grow at a 
temperature above 30°C. The optimal pH for growth is 5–9; possible range is pH 4–10. 
Generation times of Rhizobium strains are 1.5–5.0 h. Colonies are usually white, light beige 
or non-pigmented, circular, convex, semi-translucent or opaque, raised and mucilaginous, 
usually 2–4 mm in diameter within 3–5 days on yeast-mannitol-mineral salts agar. Growth 
on carbohydrate media usually is accompanied by copious amounts of extracellular 
polysaccharides. 

It is a chemoorganotrophic bacterium, utilizing a wide range of carbohydrates, salts 
of organic acids, and amino acids as sole carbon sources, without gas formation. The 
bacterium does not produce 3-ketolactose (this feature differentiates it from A. 
tumefaciens). It utilizes a relatively wide range of organic substrates as sole sources of 
carbon: l-arabinose, d-cellobiose, d-fructose, d-galactose, d-glucose, l-histidine, inositol, d-
mannose, rhamnose, ribose, sorbitol, d-turanose, and d-xylose. It also can utilize l-arginine, 
amygdalin, l-citrulline, erythritol, ethanolamine, l-lysine, methyl-d-glycoside, l-ornithine, 
propionate, and sarcosine, which differentiates it from other agrobacteria. Cellulose, 
glycine, glycogen, inulin, oxalate, urea, and starch are not utilized. The bacterium produces 
an acidic reaction in mineral-salts medium containing mannitol or other carbohydrates; 
requires biotin as a growth factor (A. rhizogenes strains do not utilize nitrate unless biotin 
is supplied; some strains require both l-glutamic acid and biotin); does not grow in media 
containing 2% NaCl. Ammonium salts, nitrate, nitrite, and most amino acids can be 
nitrogen sources. Peptone is poorly utilized. Casein, starch, chitin, and agar are not 
hydrolyzed by this bacterium. 

The mol% G–C of the DNA is: 59–63 (Tm). 
Type strains: ATCC 11325, DSM 30148, ICMP 5794, IFO 13257, LMG 150, NCPPB 

2991. 
GenBank accession number (16S rRNA): D01257, D14501. 
Cell wall composition. The cell wall structure of Rhizobium is similar to that of 

other Gram-negative bacteria. The peptidoglycan consists of glutamic acid, alanine, 
diaminopimelic acid, and amino sugars. In addition, several pathogenic strains have 
leucine, phenylalanine, serine, and aspartic acid in the peptidoglycan layer as well. 
Lipopolysaccharide composition varies from strain to strain but usually contains 2-keto-3-
deoxyoctanoic acid, uronic acids, glucosamine, glucose, mannose, rhamnose, fucose, and 
galactose. Rhizobia also has an unusually complex composition of membrane 
phospholipids, phosphatidylcholine is among them. 

Fine structure. Cellulose-containing fibrils, which anchor the bacteria to the plant 
cell surface, are formed by pathogenic Agrobacterium strains during their attachment to 
plant cells at the wounded site.  

Cultural characteristics. All bacteria produce abundant water-soluble extracellular 
heteropolysaccharides and glucans. Chromosomal genes termed chv are responsible for the 
production of cyclic glucans essential for virulence in all species of Agrobacterium 
(Rhizobium).  

Plasmid-mediated plant-pathogenic (rhizogenic) activity in A. rhizogenes. 
Rhizogenic (hairy rot producing) activity of A. rhizogenes, as well as oncogenic 
(tumorigenic) activity of A. tumefaciens, are mediated by genes that are carried on one or 
more large (>150 kb) plasmids. Tumorigenic activity is conferred by Ti-plasmids and 
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rhizogenic activity is conferred by Ri-plasmids. Rhizogenic genes on the Ri-plasmid 
comprise T-DNA genes and virulence (vir) genes. These last do not incorporate into the 
plant cell genome, although their presence is intrinsic to the successful transformation. Vir 
genes are activated by the phenolic compounds of wounded plant tissue, such as 
acetosyringone and lignin precursors. These genes facilitate the transfer of a T-DNA (8–22 
kb) of Ri-plasmid that integrates into the plant nucleus genome in one or more copies. T-
DNA carries rol (“root loci” or “rooting locus”) genes, necessary for hairy root initiation and 
growth, as well as secondary metabolism activation and opine production. Opines are acid 
derivatives produced in hairyroots. These compounds are the nutrient source of carbon 
and nitrogen for agrobacteria and are not utilized by plants. That is why these bacteria are 
considered pathogenic. About 30 opines have been identified, the most common and well-
known of which are octopine, nopaline, cucumopine, mannopine, and agropine (Zárate 
2010; Trovato et al. 2018). The set of opines is unique for each strain and for each type of 
Ri-plasmid.  

Pathogenic host range. The host range of rhizogenic Agrobacterium strains is very 
wide: De Cleene and De Ley (1981) reported 37 plant species belonging to 30 genera in 15 
families of dicotyledonous plants as susceptible to transformation by A. rhizogenes. 
However, they investigated 250 monocotyledonous species, and none of them were 
susceptible to the disease, except some members of Liliales and Arales. Bradbury (1986) 
listed over 50 plant species affected by rhizogenic strains as well. Later, Porter (1991) 
reported that more than 450 species of many different genera and families are known to be 
susceptible to infection by A. rhizogenes. Since then many more additions have been made 
to the list, even among trees-gymnosperms, e.g. Taxus (Syklowska and Sygitowicz, 2019). 

There have also been indications of narrow host specificity within some species 
(Anderson and Moore, 1979; Unger et al., 1985; Paulus et al., 1991) and within some 
populations of different countries. Such specificity is quite variable among A. rhizogenes 
strains (Paulus et al., 1991).  

Indeed, monocotyledonous species are rarely transformed with A. rhizogenes due to 
several limitations (Hao et al., 2021): monocotyledons are not easy to produce phenols; 
their cells are prone to lignification, adverse differentiation, and selective response to A. 
rhizogenes strains. Nowadays, there are many more possible monocotyledonous hosts of A. 
rhizogenes due to the advances in biotechnology. In most cases, successful transformation 
and hairyroot initiation in monocotyledons and gymnosperms require the addition of 
acetosyringone or a usage feeder layer (Syklowska and Sygitowicz, 2019).  

Agrocin activity. It was found that A. rhizogenes strain 84 (ICMP 3379; NCPPB 
2407) can synthesize plasmid-encoded agrocin (New and Kerr, 1972). It is a toxic analog of 
an adenine nucleotide and selectively inhibits pathogenic Agrobacterium strains harboring 
a nopaline Ti-plasmid. This compound was studied as a tool for the biological control of 
crown gall disease and was found successful. Strain 84 is now available in commercial 
drugs as a biological control agent with wide application.  

Ecology. Rhizobium occurs worldwide in soils and plant rhizosphere, although some 
unique species may be isolated from limited geographic regions due to the distribution of 
their hosts. Agrobacterium strains have also been reported in some human clinical 
specimens (CDC group Vd-3) (Rubin et al., 1985). They are usually nonpathogenic and 
occur either as incidental inhabitants in the patient or as contaminants.  

Antibiotic sensitivity. In general, wild-type Agrobacterium species can be sensitive 
to chlortetracycline, gentamicin, neomycin, novobiocin, oxytetracycline, and tetracycline 
but are commonly resistant to nalidixic acid. Its growth is inhibited by low concentrations 
(3–780 μg/ml) of metacycline, doxycycline, sigmamycin, and triacetyloleandomycin. 
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1.4. Ri-plasmids 

A. rhizogenes plasmids are approximately 200 kbp (Kang et al., 2020). They have a
region (area) of transport DNA (T-DNA), which is transferred to plant cells by the action of 
virulence genes (vir) from the same plasmid. The core vir genes and chromosomal 
virulence (chv) genes are essential for pathogenicity. Vir are located in four operons, in 
addition to virA and virG for a two-component regulatory system that receives signals from 
plants. The most significant vir genes are virD1 and virD2, which portray proteins that 
attach to and cut DNA at 25-bp T-DNA border repeat sequences (Georgiev et al., 2012). 
Other vir genes, such as virE1 and virE2 are significant as well. Proteins translated from 
these genes shield T-strands from nuclease digestion and facilitate their integration into 
the plant chromosome. Interestingly enough, some A. rhizogenes strains do not possess 
these genes but still transfer T-strands effectively due to the pRi GALLS gene portraying a 
protein with a nuclear localization signal and helicase activity. 

The T-DNA region(s) contain genes for the synthesis of phytohormones that induce 
excessive cell division in plants. T-DNA usually contains a set of rol genes (rolA, rolB, rolC, 
and rolD) that stimulate the formation of additional roots and enhance secondary 
metabolism. T-DNA of Ri-plasmids is randomly integrated into the plant genome and 
expressed as mRNA (Gutierrez-Valdes et al., 2020). TL-DNA and TR-DNA are usually 
independently transferred and stably integrated into the genome of the host plant. 
However, TL-DNA alone is vital and sufficient for the induction of hairy roots.  

Strains can carry one, two, or three T-DNAs on their pTi/pRi plasmid (Chen & Otten, 
2017). T-DNA is surrounded by direct repeats of approximately 25 nucleotides (so-called 
boundaries or borders). The transmission starts from the so-called right boundary and 
continues to the left boundary. Integrated T-DNAs are often incomplete and truncated in 
the left part. They can occur as single copies or as tandem or inverted repeats. 

The complete genome sequences of various strains of A. rhizogenes are available in 
the literature. For example (Hooykaas & Hooykaas, 2021), the genome of strain LBA9402 
(NCPPB1855rifR) consists of 3958212 bp chromosome, a 2005144 bp chromid (secondary 
chromosome), and 252168 bp Ri-plasmid (pRi1855). This agropine Ri-plasmid has about 
4% lower GC content than the rest of the genome. It has two T-regions, one of which, the 
TL-region, contains rol genes. Ri plasmids of other strains may have only one T region with 
very similar genes (Otten, 2018). One (in cucumopin and mikimopin Ri-plasmids) or two 
(in mannopin Ri-plasmids) non-conservative genes are present at the very right end of the 
TL region. They encode cucumopine, mikimopine, and mannopin synthases, respectively.  

This agropine Ri-plasmid, in addition to the conservative TL-site, has an additional 
TR-site containing aux-genes involved in the biosynthesis of auxin indoleacetic acid (IAA) 
(Offringa et al., 1986), and the genes mas1, mas2, ags for agropine biosynthesis (Bouchez & 
Tourneur, 1991). The virulence region of pRi1855 responsible for T-DNA transfer into 
plant cells contains the important virulence genes virA, virB1-virB11, virG, virC1, virC2 and 
virD1-virD5 in the same order as in other Ri and Ti plasmids, but the virE1 and virE2 genes 
are absent and replaced by a novel orf (Open Reading Frame) with some similarity to the 
nopaline pTi of virF.  

Hairy roots formed via transformation with such agropine strains contain agropine, 
agropinic acid, mannopinic acid, and mannopine. Moreover, A. rhizogenes strains such as 
A4, but not NCPPB1855 contain a second, catabolic plasmid with genes for catabolism of 
the other three mannityl opines. Researchers (Hooykaas & Hooykaas, 2021) have identified 
the genes for agropine transport and catabolism in pRi1855, which are located in a 
segment of the plasmid adjacent to the TR region.  

Until recently, agrobacteria were considered the only bacteria that can transfer part 
of their DNA (T-DNA) prom Ri-/Ti-plasmids to the plant genome. However, in 2022 Cho et 
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al. published an article on a novel bacterium, Ochrobactrum haywardense H1 (Oh H1), 
which was discovered to be capable of efficient plant transformation. Ochrobactrum spp. 
are environmental organisms and are considered opportunistic pathogens of low virulence 
in humans (Wisplinghoff, 2017). Oh H1 is a unique, non‐phytopathogenic species, which 
can host Agrobacterium-derived vir and T-DNA and helps to deliver transgenes in soybean. 
The researchers generated a cysteine auxotrophic Oh H1‐8 strain containing a binary 
vector system. It generated high-quality transgenic events by single-copy, plasmid 
backbone-free insertion at frequencies higher than those of Agrobacterium strains (up to 
35%). Scientists have demonstrated that Oh H1‐8, combined with spectinomycin selection, 
is an efficient, rapid, marker‐free, and yield‐neutral transformation system for soybean, 
and hopefully, for other plants. Such novel findings are very promising and should be 
researched further. 

1.5.  Role of Ri-plasmids in horizontal gene transfer in nature 

In all eukaryotes, including plants, the maintenance of the integrity of species is 
ensured by the vertical transmission of genetic information through reproduction. 
However, horizontal gene transfer (HGTs) exists as well. It is the interspecific transmission 
of genetic information across reproductive barriers that are very common in nature and 
proceeds through different agents: parasitic plants (Orobanche, Cuscuta, Rafflesiae, Striga), 
viruses (Florendivirus, Totivirus, Pararetrovirus, Cucumber necrosis virus), bacteria 
(Agrobacterium) and fungi (Colletotrichum) (Aubin et al., 2021). Nowadays, the advent of 
next-generation sequencing technologies has opened new perspectives and possibilities for 
the study of HGTs through comparative genomic approaches. 

The agrobacterial T-DNA incorporation mechanism is HGT-dependent sensus stricto, 
as it is the transmission of genetic material from bacteria to plants. However, as it turned 
out, many plants in nature carry some regions of agrobacterial DNA (similar to the 
phenomenon of plants carrying some regions of viral genetic material) that are inherited 
transgenerationally without any visible change in plant morphology, i.e. acquisition of 
crown galls or hairy roots. This occurrence was initially reported in Nicotiana glauca (tree 
tobacco), which carries in its nuclear genome a region homologous to the part of the Ri-
plasmid of A. rhizogenes (White et al., 1986). This region of plant DNA was called cellular T-
DNA (cT-DNA) and was initially described as an imperfect inverted repeat that contained 
two homologs to rol genes, NgrolB and NgrolC (Ng, N. glauca). Later, the cT-DNA was found 
to contain two additional genes corresponding to open reading frames ORF13 and ORF14 
and mikimopine synthase (mis) sequences (NgmisL and NgmisR) that indicated that its 
mikimopine-type Ri-plasmid origin (Quispe-Huamanquispe et al., 2017). 

Intrieri and Buiatti (2001) screened 42 Nicotiana species and found that at least one 
of genes rolB, rolC, ORF13, and ORF14 genes were detected in the genome of 15 species. 
Their phylogenetic analyses concluded that the rol genes seemed to follow the evolution of 
the Nicotiana genus via more than one independent infection by A. rhizogenes in ancient 
times. This hypothesis was supported through deep sequencing of the genome of the 
ancestral tobacco species Nicotiana tomentosiformis (Chen et al., 2014). The genome of N. 
tomentosiformis contains four cT-DNAs (TA, TB, TC, and TD) all of which are derived from 
different Agrobacterium strains. Each of these cT-DNAs contains an incomplete inverted-
repeat structure. The TB region contains an intact mannopine synthase 2′ gene (TB-mas2′) 
that is highly expressed in the roots of some N. tabacum cultivars. These results suggest 
that the TB-mas2′ gene could have been selected in some tobacco populations by nature or 
by tobacco growers, as a result of changes in the root metabolism of these plants (Chen et 
al., 2016). The inverted repeat of TC partially aligns with TL from A. rhizogenes strain A4 
(Chen et al., 2017). 
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Some strains of agrobacteria carry two different T-DNAs on their Ti/Ri-plasmid (TL 
and TR regions) and can introduce separately or combined as a single insert. Potentially, 
this leads to a large variety of cT-DNA structures. However, most natural transgenic plants 
carry a single insert consisting of a partially inverted cT-DNA repeat. There is no proven 
hypothesis of why this is the case, although the following factors might be considered 
(Chen et al., 2017):  

a) cT-DNA inserts in multiple sites will segregate during sexual propagation,
favoring single inserts;

b) repeat structures are more tolerant to mutations, thus facilitating the
preservation of important genes;

c) T-DNA transfer starts at the right border and proceeds to the left, therefore
incomplete T-DNA structures will tend to have intact right borders and break
off on the left.

After stable integration, cT-DNAs will evolve through point mutations, insertions, 
and deletions, in the same way as normal plant DNA (Chen et al., 2017). Many cT-DNA 
genes in natural transgenic plants are interrupted by stop codons or are partially deleted. 
Moreover, some genes of cT-DNA may become active. For example, NgrolB of N. glauca is 
inactive but can convert to an active form by the removal of two stop codons (Aoki, 2004). 
However, it is not clear whether the active form corresponds to the original rolB gene.  

Other famous examples include Linaria vulgaris (common toadflax) and Ipomoea 
batatas (sweet potato). L. vulgaris cT-DNA is an exception to the usual rule of cT-DNAs: 
most of them have inverted repeats, while LvT-DNA has direct repeats. L. vulgaris was 
shown to contain several sequences, homologous to T-DNA genes of mikimopine synthase 
(mis), rolB, rolC, ORF13, and ORF14 (Kovacova et al., 2014; Matveeva et al., 2012). It is 
believed that the presence of cT-DNA in Ipomoea and other species may influence the 
special regeneration abilities of these plants: Linaria carries buds on its roots, which may 
greatly facilitate plant regeneration from hairy roots. L. vulgaris (but not L. maroccana) 
internode fragments easily form shoots and calli in vitro, even on a hormone-free medium 
(Matveeva et al., 2012). 

In I. batatas, two sets of T-DNA were found: IbT-DNA1 and IbT-DNA2 (Kyndt et al., 
2015). IbT-DNA1 was found to contain four ORFs homologous to the tryptophan-2-
monooxygenase (iaaM), indole-3-acetamide hydrolase (iaaH), C-protein (C-prot), and 
agrocinopine synthase (Acs) genes of Agrobacterium spp. IbT-DNA2 contained at least five 
ORFs with significant homology to the ORF14, ORF17n, rolB/rolC, ORF13, and 
ORF18/ORF17n genes of A. rhizogenes. Such findings corroborated that sweet potato is 
naturally transgenic while being a widely and traditionally consumed food crop. It is 
believed that thanks to the constant advances in molecular biology and the popularity of 
sequencing, more plants of other genera will be found to carry some regions of 
agrobacterial T-DNA in nature (Aubin et al., 2021).  

Agrobacterium strains have also been found as endophytes in many symptomless 
monocot species (Kang et al., 2020), which are known to be resistant to agrobacterial 
infection, and therefore hard to be transformed. The study of endophytic variation and how 
these endophytic strains differ from pathogenic strains is interesting. For this, endophyte 
isolates from young wheat and barley plants resistant to diseases were screened. Obtained 
isolates were studied and their plasmids were determined: two isolates with 200-kbp Ri-
plasmids carrying rol genes and five isolates with 500-kbp Ti-plasmids were found. 
Moreover, both isolates with Ri-plasmids were examined on their ability to cause infection 
in Nicotiana. The experiment was successful, and the hairy root proliferation took place. 
Data strongly suggest in favor of the pathogen-reservoir plant hypothesis, i.e. that healthy 
wheat and other monocot plants are reservoirs for pathogenic strains of Agrobacterium 
(Fig. 2), which may aid in horizontal gene transfer among different plants.  
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Figure 2 – The agrobacteria cycle as pathogens, rhizosphere inhabitants, and 

endophytes among susceptible and resistant plants (pathogen-reservoir plant hypothesis) 
(Kang et al., 2020) 
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1.6. Plant-Agrobacterium interaction in nature 
 
Agrobacteria are not just pathogenic bacteria that persist in plants, changing plant 

metabolism in bacteria's favor. They are soil bacteria, living in the rhizosphere, often found 
in soils of various origins, and appear to be among the most common inhabitants of these 
environments (Dessaux & Faure, 2018). Agrobacteria can live without harming the plant, as 
T-DNA incorporation occurs only in some wounded plants during various stages of their 
life (via wounds caused by growth, germination, subterranean insects, or mechanical 
injuries, such as pruning, grafting, and replanting of trees in nurseries (Garrity, 2005)). 
This means that most of the agrobacteria isolated from soils should be avirulent. This 
hypothesis was confirmed by many researchers from the early studies of agrobacteria in 
the 1970-1980s.  

Indeed, pathogenic agrobacteria were very rarely found in soils and on roots, unless 
the environments were contaminated by infected plants, whereas nonpathogenic 
agrobacteria were commonly present with concentrations ranging from 103 to 107 CFU/g 
(Schroth et al., 1971; Bouzar & Moore, 1987; Burr et al., 1987). I.e., they did not harbor a Ti-
plasmid, the key replicon that determines virulence, unless the soil had a history of crown 
gall or hairy root disease. 

Such findings may suggest interesting features of agrobacteria that may allow them 
to colonize the highly competitive soil environment (Fig. 3, A). Indeed, it was determined 
that  

a) agrobacteria may survive for weeks and months under oligotrophic 
conditions, including pure water (Iacobellis and Devay, 1986);  

b) surface waters and aerosols contribute to the dissemination of 
Agrobacterium populations;  

c) members of this genus are also resistant to osmotic stress, both by taking 
up osmoprotectants (Boncompagni et al., 1999) or by synthesizing them 
(Smith et al., 1990);  

d) agrobacteria can survive for months in humic acids that are released into 
the soil from decomposed plants (Süle, 1978);  

e) these bacteria evolved a wide metabolic capability to feed on 
rhizodeposits – root cell debris and exudates that are released from plant 
root system (Dessaux & Faure, 2018). 

Agrobacteria are well equipped not only to survive in various soils but to compete 
against other bacteria (Fig. 3, B), living in that soil and taking the much-needed nutritious 
compounds from it. Indeed, agrobacteria have a set of potent siderophores, such as 
agrobactin (Ong et al., 1979) and hydroxamate (Penyalver et al., 2001), which permit an 
efficient recovery of iron in iron-deprived environments. In addition, agrobacteria are 
partly resistant to some antibiotics (listed earlier) and they can express a type VI secretion 
system (Ryu, 2015) that drives the injection of at least three effectors with enzymatic 
activities (DNase and putative peptidoglycan amidase) into neighboring competing 
bacteria (Ma et al., 2014). 

Another set of adaptations helps agrobacteria withstand plants as well (Fig. 3, C). 
Plants can exude harmful to other bacteria metabolites, such as phenolic compounds, 
which have inhibition properties for fungi and bacteria. It is one of the possible systems of 
plant protection in case of wounding or stress. Despite that, agrobacteria possess an efflux 
pump active on some phenolic substances, such as medicarpin, coumestrol, ferulic acid, 
vanillyl alcohol, vanillin, coniferyl alcohol, coniferyl aldehyde, sinapyl alcohol, 
sinapinaldehyde, and syringaldehyde (Brencic et al., 2004; Baude et al., 2016).  
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Figure 3 – Mechanisms of Agrobacterium spp. survival in soil: A – adaptations 

against environmental factors; B – adaptations against other bacteria; C – adaptations 
against plants 
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In addition, pathogenic agrobacteria can detoxify other phenolics via the products of 
two Ti-plasmid genes, virH1, and virH2, located in the virulence region. These protein 
products share sequence homology with cytochrome P450-like enzymes (Kanemoto et al., 
1989), and VirH2 is an O-demethylase active on over 15 phenolic substrates such as 
sinapinic acid and acetosyringone. Taken together, these data conclude that pathogenic 
agrobacteria are more resistant to phenolics than nonpathogenic ones, a result confirmed 
by the analysis of a virH2 mutant (Brencic et al., 2004).  

Remarkably, many of the above-mentioned phenolics (e.g., acetosyringone) are 
inducers of the vir genes of Agrobacterium and a few may also be chemoattractants (Parke 
et al., 1987). Indeed this wonderful adaptation allows agrobacteria to move upward in the 
concentration gradient toward the wounded plant cells. All these studies show that 
agrobacteria can thrive in soil and continue to be non-pathogenic. However, it is much 
more favorable for these bacteria to infect the plant and change its metabolism to feed on 
opines (as discussed earlier) and fill this “niche”. In other words, it is better to shift from a 
generalist behavior in the soil and the rhizosphere to a specialist behavior in the tumor or 
hairy roots where they escape most microbial competitors and became a part of plant 
defense. 

All in all, plant-Agrobacterium interaction in nature can occur in four different ways: 
1) agrobacteria are living in the soil, feeding on rhizodeposits from plants and humic 

acids from decomposed plants, as well as other carbon and nitrogen sources from soils 
(Fig. 4, A); 

2) A. rhizogenes and A. tumefaciens infect the wounded plants and can incorporate 
their T-DNA from Ri-/Ti-plasmids into the plant genome (in the case of dicots and some 
gymnosperms), changing plant metabolism to feed on produced opines (Fig. 4, B); 

3) plants in nature carry some regions of agrobacterial DNA in the form of 
incorporated cT-DNA, when agroinfection took place in ancient times and deactivation of 
incorporated rol genes and other ORFs occurred (Fig. 4, C); 

4) agrobacteria persist in plants (mostly monocots) without causing disease and can 
transfer tzs genes of phytohormone trans-zeatin synthesis (Han et al., 2013; Hwang et al., 
2013), which could enhance plant growth and, in return, would favor the endophytes to 
live within these plants (Kang et al., 2020; Hooykaas & Hooykaas, 2021) that may be seen 
as some form of mutually beneficial coexistence between agrobacteria and plants that are 
not susceptible to agrobacterial infection in nature (Fig. 4, D).  
 

1.7. Effect of rol genes 
 
T-DNA of Ri-plasmid of A. rhizogenes type strain A4 contains two regions: TL-DNA 

and TR-DNA. The first has four rol genes (“rooting locus”): A, B, C, and D, which improve 
plant cell susceptibility to auxins and cytokinins and are responsible for the formation of 
these roots (Alcalde Cho et al., 2022; Mauro et al., 2017; Bulgakov et al., 2018). TR-DNA 
contains genes related to auxin biosynthesis, known as aux1 and aux2. Both regions can be 
transferred to the nuclear genome of infected plant cells independently (Nemoto et al., 
2009). 

All T-DNA genes and ORFs may be subdivided into 3 groups: the ones that encode 
opine synthesis, the ones that encode hormone synthesis, and plast genes. The latter 
includes rol genes and some ORFs of Ri-plasmid that can change the development of plants 
in various remarkable ways. The name “plast” originates from the “developmental 
plasticity” function of these genes. 

The rol genes were initially defined based on the capacity of A. rhizogenes A4 T-DNA 
mutants to induce hairy roots on Kalanchoe daigremontiana leaves (White et al., 1985). The 
study showed that rolB plays a key role in the hairy root phenomenon, as rolB mutation 
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abolished hairy root growth. rolC mutation showed that this gene is not essential for root 
induction on K. daigremontiana leaves, but in its absence, root growth was retarded. It was 
also shown that the rolABC combination is sufficient to induce the typical hairy root 
phenotype. Moreover, A4-rolB induces roots by itself (although these differ from rolABC 
roots), as well as rolC (only under 35S promotor though). However, one should keep in 
mind that the characteristics of obtained hairy roots are significantly dependent on the 
species of transformed plant, agrobacterial strain (see Sathasivam et al., 2022), and culture 
conditions.  

For example, one of experiments showed that apple rootstock M.9/29 rolB tissues 
were rooted efficiently on a hormone-free medium (contrary to untransformed 
rootstocks). However, quite unexpectedly, root growth, length, and morphology of the 
regenerated plants were the same as for untransformed apples (Zhu et al., 2001). It was 
also determined (Offringa et al., 1986) that Agrobacterium strains with an agropine-type 
Ri-plasmid may not only cause hairy root induction but can also induce tumors in some 
plant species. Agrobacterium strains containing the TR-region but not the TL-region of the 
Ri-plasmid were still tumorigenic (those carrying aux genes) on certain plant species but 
were no longer capable of hairy root production. However, later research (Mauro et al., 
2017) discovered that the knock-out of the rolB gene causes the plasmid to be avirulent. 

Now, let us consider the mechanisms of rol genes in more detail. 
The mechanism of rolA (orf10) action. The rolA was found on all Ri-plasmids. It 

encodes a small protein that is suggested to be involved in the metabolism of gibberellins 
and other classes of hormones, as rolA incorporation decreases their content and can cause 
dwarfism in some plants (Dehio et al., 1993; Pistelli et al., 2010; Ozyigit et al., 2013). It was 
also reported that the rolA gene is responsible for changes in polyamines metabolism 
(Martin-Tanguy et al., 1996).  

The mechanism of rolB (orf11) action. The function of the rolB gene is the 
mechanism of “emergency” root formation in plants. In addition, it affects auxin 
metabolism and auxin perception (Otten, 2018). Thus, it plays an essential role in the early 
stages of hairy root induction (Dilshad et al., 2021). Adventitious roots induced by the rolB 
gene produce large lateral roots in tissue culture. These phenomena indicate that the rolB 
protein has a crucial effect on the formation of roots. Therefore, elucidation of the function 
of the rolB protein is necessary for understanding of root formation in plants (Pistelli et al., 
2010). The difference in the growth rate among hairyroot lines is due to the difference in 
the expression level of the rolB gene (Tanaka et al., 2001). A proper level of rolB expression 
appears necessary for the active growth of hairy roots because either a high or a low level 
correlates with impaired growth. Overexpression of the rolB gene under the control of the 
CAMV35S RNA promoter (P35S) suppresses adventitious root induction (Spena et al., 
1987) and leads to cell death (necrosis) both in callus and in leaves of young plants 
(Schmulling et al., 1988). It was suggested that rolB protein is a beta-glucosidase, tyrosine 
phosphatase, or an auxin-binding protein. However, such hypotheses were withdrawn 
(Mauriel et al., 1991; Nilsson et al., 1993). rolB gene is also considered the gene that mostly 
influences plant secondary metabolism and activates plant defense reactions out of all rol 
genes (Bulgakov et al., 2002; Kiselev et al., 2007; Pistelli et al., 2010; Dilshad et al., 2021). 
Its expression increases tolerance to biotic and abiotic stresses (Veremeichik et al., 2012; 
Bulgakov et al., 2013; Arshad et al., 2014) and enhances resistance against fungi (Arshad et 
al., 2014). Additionally, the rolB gene showed to be involved in RNA silencing pathways 
through microRNA overexpression (Bulgakov et al., 2015). Finally, the rolB gene is involved 
in the activation of the transcription factors of most specialized metabolites in hairyroots 
and the expression of chaperone-type proteins (Bulgakov et al., 2018). It is also considered 
that orf13 acts synergistically with rolB and may replace auxin required for hairyroot 
induction, suggesting it has auxin-like activity (Hansen et al., 1993; Aoki and Syono, 1999). 
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Figure 4 – Plant-Agrobacterium interaction in nature: A – agrobacteria as free-living 

organisms in soil; B – agrobacteria as the causative agent of hairy root and crown gall 
diseases; C – agrobacteria as one of the agents in horizontal genes transfer in the form of 
cT-DNA; D – possible mutually beneficial coexistence between agrobacteria and some 
plants 
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The mechanism of rolC (orf12) action. rolC is considered the most conserved of all 
rol genes and has a minor impact on root formation (Makhzoum et al., 2013). The effects of 
the rolC gene are well documented in many plant species, as they produce essentially 
similar phenotypes. This gene affects plant size and structure, including reduced height, 
internode length, fertility, apical dominance, and increased number of flowers (Smith et al., 
2006). Other morphological effects are changes in the size, color, and shape of leaves 
(Pistelli et al., 2010). The different degrees of dwarfness due to the rolC effect have been 
observed among independent transformants carrying the same rolC gene construct. These 
differences depend on several factors as the site of integration, copy number, mutation, 
somaclonal variation, and changes in expression level (Kiyokawa et al., 1996; Giovannini et 
al., 1997; Pistelli et al., 2010). The effects on plant morphology of the rolC gene may be due 
to cytokinin-beta-glucosidase activity that increases cytokinin levels (Estruch et al., 1991). 
It was demonstrated that rolC has a minor stimulatory effect on secondary metabolism as 
well, influencing the levels of tropane alkaloids, pyridine alkaloids, indole alkaloids, 
ginsenosides, and shikimate-derived anthraquinone phytoalexins, without changing 
general plant defense pathways (Bulgakov et al., 2003; Palazon et al., 2003; Cardillo et al., 
2013; Hashemi and Naghavi, 2016). Interestingly, rolC is induced by sucrose (Nilsson et al., 
1996) and it can counteract the necrotic effects of the rolB gene (Röder et al., 1994). 
Nevertheless, the mechanism for this antagonistic activity remains unexplained. It may be 
due to the possible function of rolB in increasing or decreasing reactive oxygen species 
(ROS) signaling, while rolC acts as a suppressor of ROS (Paolis et al., 2019). 

The mechanism of rolD (orf15) action. It is considered that rolD stimulates 
reproductive phase transition in plants, enhanced flowering (through changes in the 
concentration of plant hormones), minorly stimulates root growth, and influences plant 
performance and the defense response to pathogens (Mauro et al., 1996). Biochemical 
assays have shown that rolD encodes an ornithine cyclodeaminase able to catalyze the 
NAD+-dependent conversion of ornithine to proline, thus inducing acceleration and 
stimulation of flowering in both plants and tissue cultures (Pistelli et al., 2010). Thus, the 
role of rolD in hairyroot formation is marginal, but the gene can influence plant 
development through its metabolic activity (Trovato et al., 2018). This gene shares about 
55% identity with adjacent orf16 (Hooykaas & Hooykaas, 2021). 

Most studies on the expression of rol and aux genes in hairy root cultures have 
focused on demonstrating their effect on secondary metabolism and morphology of 
transformed roots and regenerated plants. Alcalde Cho et al. (2022) focused on analyzing 
the relationship between rol and aux genes expression and the hormonal profile, which is a 
determinant in root development and morphology using machine learning models. They 
studied 10 hairy root lines of Centella asiatica that had noticeable differences in branching 
rate, growth rate, and biomass accumulation. 

The scientists selected rolA, rolB, and rolC genes, as they have been shown to play 
the most relevant role in hairy root development (Sarkar et al., 2018; Bahramnejad et al., 
2019), and the aux1 gene. In their study, the expression level of all rol genes was higher 
than that of the aux gene, which may be since only the presence of TL-DNA genes is 
required for long-term hairy root growth (Chriqui et al., 1996).  

The results showed that the expression of genes varies widely among the lines: lines 
L3, L4, L6, and L7 had the lowest expression of all genes; L10, L12, and L14 had high 
expressions of the rolC and rolB genes; L1, L2, and L8 showed higher expressions of the 
rolA and aux1 genes. A positive correlation was observed between centelloside content, 
branching, biomass productivity, rol, and aux1 genes. The highest centelloside productions 
were strongly related to rolA, rolB, and aux1 genes.  

The cluster analysis of hormones based on the influence of gene expression was 
performed as well. Abscisic acid (ABA) was most influenced by the expression of rolB, 
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followed by rolA and rolC. Isopentenyl adenosine (IPA) was heavily influenced by aux1, 
followed by rolA. 2-Isopentenyl adenine (2iP) was mostly affected by rolC. Gibberellins 
(GA4) synthesis was slightly affected by rolA and aux1. Indole 3-acetic acid (IAA) was 
influenced by rolA and rolC. Salicylic acid (SA) was affected by rolB. Other plant hormones 
(jasmonates and trans-zeatin) were not greatly influenced by rol or aux1 gene expression. 

In addition to the studies of Ri-plasmid T-DNA genes’ functioning as hairy root 
inducers, many researchers were interested in the morphological differences of those 
transformed roots from the wild-type roots on a microscopic level. Data from various 
articles (Lincoln et al., 2002; Ho-Plágaro et al., 2018; Daspute et al., 2019; Jian et al., 2009; 
Ishida et al., 2011; Marsh et al., 2014; Plasencia et al., 2016) is in favor of the ability of hairy 
roots to retain the structure and fine morphology of wild-type roots of the same species. 
This information is crucial, as it shows that hairy roots can be used as a potent system for 
the profound study of the function of genes that play a role in the development of the root 
structures in nature.  

Let us look at some of the examples. 
Jian et al. (2009) successfully transformed Lotus corniculatus via A. rhizogenes 

infection. They identified hairy roots with the help of GUS staining and GFP detection. The 
microscopy and PCR analysis proved the transgenic plants carried both GFP and GUS genes. 
Additionally, the comparison of hairy roots and non-transformed roots showed their 
similarity in structure. To further verify gene transfer, GFP and GUS expression were 
monitored on the whole plant level: scientists obtained regenerated plants from hairy roots 
and conducted GUS staining and GFP detection as well. The transformation events were 
additionally confirmed by Western blot using an anti-GFP antibody.  

Ishida et al. (2011) were interested in whether the possibility of parasitic roots 
retaining their specialized structures will be changed or even canceled after their 
transformation. The scientists successfully obtained hairy roots of Phtheirospermum 
japonicum from cotyledons (using A. rhizogenes and acetosyringone treatment) and 
verified their transgenicity by genomic PCR, Southern blot, and RT-PCR methods. 

This plant forms such specialized structures – haustoria – through which P. 
japonicum obtains water and nutrients directly from host plants. To determine whether or 
not transgenic roots can form haustoria, transgenic roots were placed in a medium 
containing 10 µM DMBQ for 2 days, as DMBQ (2,6-dimethoxy-1,4-benzoquinone) is a 
haustorium-inducing chemical. Competent haustoria were formed and studied using bright 
field and fluorescence microscopy. They were morphologically indistinguishable from 
those formed on non-transgenic roots. To test if transgenic P. japonicum roots can infest 
host plants, they were co-incubated with rice and maize. In both cases, haustoria developed 
and attached to the hosts as well as the wild type. Thus, the morphologically normal 
development of haustoria in P. japonicum hairy roots indicates that the hormonal effects 
caused by the insertion of rol genes (Offringa et al., 1986) do not influence the parasitic 
competence of the transformed roots. 

Marsh et al. (2014) established hairy roots of Scutellaria lateriflora from internode 
sections and cultivated them in a liquid medium. The microscope study of transgenic roots 
exhibited a high degree of branching and the abundancy of very fine single-cell root hairs 
(long unicellular tubes and short papillae), which are the typical characteristics of A. 
rhizogenes-mediated transformed roots reported for many genera (Flores and Medina-
Bolivar, 1995).  

Hairy root cultures do not need supplementation with hormones to grow. However, 
sometimes auxins are added to obtain more root biomass in less time. Indole-3-butyric acid 
(0.5 mg/l) was added in this case. Agropine type A. rhizogenes strains, such as ATCC 15834 
used in this study contain two T-DNAs, which are important for the establishment of hairy 
root cultures. The TL-DNA contains the rol genes and is considered vital for the hairy root 
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initiation, while the TR-DNA contains the aux genes necessary for auxin biosynthesis. The 
scientists performed PCR analysis to confirm the incorporation of both rol and aux genes. 
These genes were transferred successfully, thus showing that the absence of vigorous 
growth of hairy roots in a liquid medium is not caused by the loss of aux genes. Possible 
explanations could be due to the positional genome integration effect of the T-DNA or an 
alternative functionality of the rol and aux genes in S. lateriflora, as the place of transferred 
genes (using agroinfection methods) is always undetermined. 

Plasencia et al. (2016) developed hairy root cultures of Eucalyptus grandis as a 
model system of rapid in vivo analysis of transgenes. They showed that Eucalyptus hairy 
roots are suitable for medium-throughput functional characterization of genes enabling, 
among others, protein subcellular localization, spatial and temporal patterns of gene 
expression, and down-regulation of endogenous genes. To evaluate whether transgenic 
hairy roots could be used as a system to explore the function of genes involved in xylem 
secondary cell wall formation, the scientists compared the radial patterning and xylem 
anatomy of hairy roots relative to wild-type roots. The observations under light 
microscopy and UV light (exciting the natural lignin autofluorescence) showed that both 
primary and secondary xylem of transformed roots developed similarly to nontransformed 
ones. Thus, transferred rol genes did not influence the morphological structure of the roots. 

Therefore, the years-long study of rol genes is not finished and is carried on both for 
a better understanding of the function of genes in hairy root cultures and for obtaining new 
features suitable for various usages. 

 
1.8. Transfer of foreign genes 

 
In previous sub-chapters, we revised A. rhizogenes as a soil inhabitant that, at the 

same time, is a causative agent of hairy roots. We recalled the structure of Ri-plasmids and 
T-DNA that is transferred into the plant cell nuclei, and we mentioned the effect of rol-
genes as secondary metabolism inducers. All the abovementioned information supports 
A. rhizogenes-mediated transformation as a powerful and potent for plant metabolism 
change in favor of producing new substances. Now, let us get acquainted with the different 
agrobacterial vectors that may be used. 

The simplest vector that can be used for the plant transformation to obtain hairy 
roots with boosted secondary metabolites synthesis is the Ri-plasmid of the wild strain, 
such as A4. As it was mentioned earlier, it harbors two regions of T-DNA (TL- and TR-DNA), 
vir genes, and genes for opine catabolism. This strain may be used for the induction of new 
hairy root lines with different sets and content of metabolites, e.g. phenolic substances, and 
even new metabolites that were not detected in the control plant.  

However, A. tumefaciens-mediated transformation is commonly used as well. Its 
main difference is that wild type A. tumefaciens strains are not used for genetic engineering 
nowadays. The cause is that wild type A. tumefaciens carry tumor-inducing, i.e. crown gall 
inducing genes in its T-DNA (that encode auxins and cytokinins production). Moreover, 
these genes do not boost secondary metabolism as rol-genes do. That is why, from early on, 
scholars decided to “cut out” all the genes from the T-DNA of A. tumefaciens (between LB 
and RB) and substitute them with the genes of interest. These early studies include the 
work of Zambryski et al. (1983), in which the oncogenic sequences between LB and RB of 
A. tumefaciens were replaced by pBR322 – plasmid of E. coli. The resulting plasmid 
pGV3850 still mediatedthe efficient transfer of T-DNA, which confirmed that even minimal 
T-DNA without oncogenes is enough to be incorporated into the plant genome.  

Ti-plasmids that do not carry oncogenic genes are called “disarmed” plasmids and 
cis-plasmids (as all needed genes for plant transformation were on the same 
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plasmid/vector). They become widely used and gave rise to the origin of new vectors for 
plant transformation. 

Apart T-DNAs, Ri- and Ti-plasmids have a high degree of homology (Fig. 5). 
Activation, processing, and movement of the T-DNA from the bacteria to the plant cell are 
highly sustained by vir genes in both species (Ozyigit et al., 2013). The organization of vir 
genes in operons is highly similar. The only difference is that Ri-plasmids lack virE1 and 
virE2 genes, and at the same time, they carry GALLS genes of the same function (considered 
in the previous sub-chapters). The roles of vir genes include: 

a) sensing plant phenolic compounds (e.g., acetosyringone);  
b) induction of other vir genes and chv genes (chromosomal genes that take part in 

virulence) expression;  
c) export of T-DNA into the cell;  
d) promotion of T-strand synthesis; 
e) topoisomerase and endonuclease functions.  
Still, the obtained “disarmed” plasmids of A. tumefaciens were quite “bulky” for the 

quick design of new vectors with selective genes and genes of interest. Thus, scientists 
were interested if it is possible to separate the much-needed vir region from the T-DNA. 
Such separation was made (Hoekema et al., 1983; Bevan, 1984) and it confirmed the idea 
that vir genes act even in trans-position, i.e. they can transfer T-DNA while existing on a 
different plasmid. This originated a new type of vectors, trans-vectors or binary vectors 
(Fig. 6), which was also confirmed later in A. rhizogenes (Simpson et al., 1986). 

Binary vectors include two plasmids/vectors: Ri-plasmid or “disarmed” Ti-plasmid, 
which is usually called T-binary vector, and helper plasmid, which is sometimes called vir 
helper plasmid. T-binary vector includes T-DNA and vector backbone. T-DNA has left and 
right border sequences (usually come from octopine or nopaline plasmids). Besides, it may 
carry reporter genes (GUS, LUC, GFP), selective genes (resistance to antibiotics or 
herbicides), and genes of interest with promoters and terminators. Typically, the vector 
backbone carries origins of replication for agrobacteria and Escherichia coli (both are 
needed for vector manipulation and maintenance) and some selectable markers. E. coli is 
used for plasmid manipulation, as it is a fast-growing bacterium. Thus, it helps to increase 
the plasmid yield. Helper plasmid carries vir region and origin of replication for 
agrobacteria. It can also carry another type of ori gene, rep ABC, with the same 
function. Sometimes “disarmed” Ti-plasmids without any incorporated T-DNA can serve as 
helper plasmids. Binary vectors can be “evolved” into superbinary vectors with the 
addition of extra vir genes to the T-binary vector. This region is called S vir and is used for 
the additional virulence of binary vectors. Such a technique may be useful for monocots 
and recalcitrant plants that are hard to transform. The last considered type of agrobacterial 
vectors is ternary vectors, introduced in 2018 by Anand et al. The idea is to use the third 
plasmid, called accessory plasmid or vir accessory plasmid, which carries an additional 
virulence gene cluster (Fig. 6). This plasmid has a structure similar to helper plasmid. Such 
a vector system is used for recalcitrant plants as well. 

Now, let us review the general scheme of selecting an appropriate agrobacterial 
vector for plant transformation (Fig. 7). At first, you should define the object of the genetic 
transformation, i.e. study the plant you have chosen to transform. For a dicotyledonous 
plant that is easy to transform, wild-type A. rhizogenes or binary vector will be enough. 
However, if you choose to work with monocots or recalcitrant plants, you should use 
superbinary or ternary vectors. After that, you have to determine the goal of your study. If 
you want to initiate hairyroot cultures without any added genes, you should use wild-type 
A. rhizogenes. If you need to obtain lines with new characteristics (e.g., expressing 
recombinant proteins) you have to use binary, superbinary, or ternary vectors carrying the 
genes of interest. If you aim to conduct a functional study, you should use CRISPR/Cas 
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vectors (see below) or vectors for suppressing plant genes by RNA interference.Then, you 
have to revise the publications on the plant and vector of choice, as it is much easier to use 
the already working system than to assemble a vector “from scratch” – with all new 
promoters, terminators, markers, and so on. The last step is the proceeding of 
transformation according to a protocol of choice, preferably with different vectors (or some 
agrobacterial strains).  

 
Figure 5 – Agropine type Ri-plasmid of A. rhizogenes and Ti-plasmid of A. 

tumefaciens (Mukherjee & Gantait, 2023) 
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Figure 6 – Different agrobacterial vectors. A – Components of the binary vector: 
Disarmed Ti-plasmid and Helper plasmid (B marker – bacterial selectable marker, LB – Left 
border, Mob – Mobilization function, MSC – Multiple cloning sites, Ori A – origin of 
replication for Agrobacterium, Ori E – origin of replication for E. coli, P marker – Plant 
selectable marker, Pro – Promoter, RB – Right border, Rep – Reporter gene). B –
Components of the ternary vector (Tra/trb – transcriptional activators, rep ABC – ABC 
replication origin) (Gallego, 2023) 
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Figure 7 – The general scheme of selecting an appropriate agrobacterial vector for 
plant transformation (Gallego, 2023) 
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Table 1 – The results of studies on the determination of various aspects of the antioxidant 
activity of transgenic roots, obtained via A. rhizogenes-mediated transformation  
without additional genes 
 

Plant species 
A. 

rhizogenes 
strain 

Results References 

Rehmannia 
glutinosa 

(Gaertn.) Steud. 
A4 

Decrease of TBARS (thiobarbituric 
acid reactive substances) level by 

50% (shoot extract) and 30% (root 
extract) 

(Piątczak et al., 
2016) 

Physalis ixocarpa 
Lam. 

ATCC 15834 

Increase of: 
TAC (total antioxidant capacity) by 
39% (root extract) and 64% (leaf 

extract), 
 the total content of phenols, 

ascorbate content in the leaves 

(Bergier et al., 
2012) 

Artemisia 
vulgaris L. 

A4 

Increase in: 
 the total content of flavonoids 

(from13.3 ± 1.0 to 73.1 ± 10.6 mg 
RE/g DW), 

 antioxidant activity  
 (EC50 = 0.23…0.36 mg DW 

compared to control 1.09 ± 0.05 mg 
DW 

(Matvieieva et al., 
2019a) 

Lactuca serriola 
L. 

AR15834 

Increase in: 
 the total content of phenols (by 54.8 

… 96.7%), 
the total content of flavonoids (by 

38.1…76.2%),  
total reducing power (by 

56.7…96.7%),  
antioxidant activity (by 31.6…50%) 

 

(El-Esawi et al., 
2017) 

Isatis tinctoria L. LBA9402 

Increase in: 
the total content of flavonoids 
(438.10 μg/gDW compared to 

control 341.73 μg/gDW), 
 antioxidant activity (EC50 = 

0.39…0.41 mg DW compared to the 
control 0.48…0.56 mg DW) 

 

(Gai et al., 2015) 

Astragalus 
membranaceus 
(Fisch.) Bunge 

 

LBA9402 

Increase in: 
the total content of flavonoids 

(234.77 μg/gDW compared to the 
control 187.38 μg/gDW), 

antioxidant activity 
(EC50 =1.40…1.73 mg/mL compared 

to the control 1.96…2.17 mg/mL) 

(Jiao et al., 2014) 
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Plant species 

A. 
rhizogenes 

strain 

 
 

Results 

 
 

References 

Polygonum 
multiflorum 

Thunb. 
KCTC 2703 

Increase in: 
the content of anthraquinones 
(emodin 211.32 μg/gDW and 

physcion 353.23 μg/gDW, which is 3.7 
and 3.5 times more than in control), 
flavonols (804.0 μg/g compared to 

549.5 μg/g in the control), 
hydroxycinnamates (833.5 μg/g 

compared to 599.5 μg/g), 
the total content of phenols (8175.30 

μg/g compared to 5633.07 μg/g GAE), 
the total content of flavonoids (76.15 

μg/g QE compared to (43.03 μg/g QE), 
antioxidant activity  

Decrease in:  
the content of hydroxybenzoic acid 
(1355.0 μg/g compared to 1481.5 

μg/g),  rutin 

(Thiruvengadam 
et al., 2014) 

Prosopis farcta 
(Banks & Sol.) 

J.F. Macbr. 

LBA9404, 
AR15834 

and A4 

Increase in: 
the total content of flavonoids by 

1.54 and 2.52 times compared to the 
control (non-transformed roots) 

and callus, respectively 

(Zafari et al., 
2018) 

Althea officinalis 
L. 

A4, A13, 
ATCC15834 

Increase in: 
the total content of phenols (up to 

1.57 ± 0.1 mg/g) and flavonoids (up 
to 3.47 ± 0.3 mg/g) 

(Tavassol & 
Safipour Afshar, 

2018) 

 
 

Table 2 – The results of studies on the determination of various aspects of the 
antioxidant activity of transgenic plants, transformed with A. tumefaciens 

Plant species 
A. tumefaciens 

strain 
Vectors/genes 

used 
Results References 

Ipomoea 
batatas (L.) 

LAM. 
cultivar 

Xushu 29 

Agrobacterium 
tumefaciens 

EHA105 

pGWB5 vector 
with IbTC and 

GFP 

Increased content of 
α-tocopherol 

(leaves: 188.9 ± 36.8 
μgg-1 DW,  3.3 times 
more than control; 

roots: 33.5 ± 4.1 μgg-1 
DW, only 10% more 

in 1 plant) 

(Kim, 2019) 

Nicotiana 
bentamiana 

Domin. 

Agrobacterium 
tumefaciens 

GV3101 

pGWB5 vector 
with IbHPPD, 

IbHPT, 
IbMPBQMT, 
IbTC, IbTMT  

Ipomoea batatas 

Increased content of 
α-tocopherol in 

leaves: 1.81…2.84 
times more than the 

control 

(Ji et al., 
2016) 
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Plant species 
A. tumefaciens 

strain 
Vectors/genes 

used 
Results References 

Perilla 
frutescens (L.) 

Britton 

Agrobacterium 
tumefaciens 
LBA 4404 

γ-tmt gene 
(pYBI121 

vector) from 
Arabidopsis 

thaliana 

The antioxidant 
potential of extracts 
increased 1.25…2.77 

times 

(Ghimire et 
al., 2015) 

Malus 
domestica 

Borkh. 

Agrobacterium 
tumefaciens 

EHA105 

MdNAC1 vector 
with genes from 

Arabidopsis 
thaliana 

Decrease in the 
content of free 

O2−radicals: 
195…236 nmolg−1FW 
compared to contro 

l412 nmolg−1FW 

(Jia et al., 
2019) 

Brassica 
juncea (L.) 

Czern. 

Agrobacterium 
tumefaciens 

GV 3101 

γ-tmt gene 
(pYBI121 

vector) from 
Arabidopsis 

thaliana 

SOD, CAT та APX 
(ascorbate 

peroxidase) activity 
increased in 1.4…1.5 

times 

(Kumar et 
al., 2013a) 

Linum 
usitatissimum 

L. 

Agrobacterium 
tumefaciens 

C58C1:pGV226
0 

CHS gene from 
Petunia hybrida 

X04080 

Antioxidant activity 
and flavonoids content 

increased 5-fold 

(Zuk et al., 
2012) 

Oryza sativa 
L. 

Agrobacterium 
tumefaciens 

LBA4404 

pMJ101 vector 
with OsGS gene 

The content of 
glutathione increased 
1.57 times, correlation 
of GSH/GSSG increased 

5.2 times 

(Park et al., 
2017) 

Hordeum 
vulgare L. 

Agrobacterium 
tumefaciens 

AGL1 

pCAMBIA13011 
vector with 

HvHGGT gene 

The content of δ-
tocotrienol increased 
2.44…2.66 times, the 

amount of β-
tocotrienol increased 

2.31…2.62 times; 
antioxidant activity 

increased by 
17…18%; Trolox 

equivalent 
antioxidant capacity 

increased up to 
33.46…33.84 μmol/g 

(Chen et al., 
2017) 

Solanum 
tuberosum L. 

Agrobacterium 
tumefaciens 

EHA 105 

pCAM2300 
vector with 

GLOase and nptII 

The content of 
ascorbic acid 

increased by141% 

(Hemavathi 
et al., 2010) 

Arabidopsisth
aliana (L.) 

Heynh. 

Agrobacterium 
tumefaciens 

GV3101 

pGEM-T vector 
with EsWAX1 
from Eutrema 
salsugineum 

The content of 
ascorbic acid 

increased by 23…27% 

(Zhu et al., 
2014) 
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Usually, the A. rhizogenes-mediated transformation is carried out in the following 
way: 

a) The agrobacteria are cultivated overnight to reach the log phase of their 
growth.  

b) Explants (e.g., leaves, internodes, or cotyledons) are prepared and scarred by 
sterile scalpels/blades.  

c) The agrobacterial suspension is added to the explants. Sometimes this 
suspension is firstly centrifuged, the supernatant is discarded and the 
agrobacterial pellet is resuspended.  

d) The cocultivation of explants and agrobacteria takes place using a standard 
medium (e.g. Murashige and Skoog medium) without any added antibiotics.  

e) After a few days, the explants are transferred to the medium with antibiotics 
(e.g. cefotaxime) and are sub-cultured several times until the visible 
initiation of the hairy roots.  

f) The transfer of individual hairy roots to obtain separate hairy root lines. If 
the used agrobacterial strain carries extra plasmid with a selective agent 
(such as resistance to antibiotics or herbicides), those lines are transferred 
onto the medium with antibiotics or selective agents.  

g) The calculating frequency and efficacy of transformation. The frequency of 
transformation is the percentage of explants that were successfully 
transformed (we can see the initiation of hairy roots) out of all explants that 
were infected. The efficacy of transformation is the number that corresponds 
to the average quantity of hairy roots initiated per each successfully 
transformed explant. 

After the elimination of agrobacteria from hairy root cultures, the PCR analysis is 
carried on usually. This helps to check the presence of rol genes (a marker of successful A. 
rhizogenes-mediated transformation), the presence of selective genes (if they are in the 
plasmid), and the absence of vir genes (a marker of the elimination of agrobacteria from 
hairy root cultures). 

Regarding A. tumefaciens-mediated transformation, its protocol is generally similar 
to the one mentioned above. However, some changes need to be accomplished due to the 
nature of this bacterium, i.e. it does not initiate hairy root cultures that can grow on plant 
growth regulators-free medium, and A. tumefaciens strains nearly always carry selective 
agent genes. Thus, before the genetic transformation procedure, nutrient medium with 
plant growth regulators must be optimized individually for each studied plant. This 
medium should contain the correct ratio of auxins and cytokinins that induces direct 
regeneration of the studied plant. Otherwise, there will be impossible to obtain 
transformed plant lines, let alone calculate the frequency and efficacy of transformation.  

As an example of successful A. rhizogenes-mediated transformation without any 
additional genes, you can look through Table 1. Table 2 gives examples of successful A. 
tumefaciens-mediated transformation with extra genes. Both tables list research papers 
focused on the initiation of new plant lines with boosted biosynthesis of secondary 
metabolites with antioxidant activities.  

Other approaches for boosting secondary metabolites biosynthesis (and antioxidant 
activity) include the usage of A. rhizogenes-mediated transformation with binary vectors 
that carry additional genes. There are several engineering strategies aimed at increasing 
the availability of antioxidants that are synthesized de novo by plants. All of them are 
focused on the modification of endogenous plant metabolism and include such techniques 
(Zhu et al., 2013): 

a) overexpression of a known rate-limiting enzyme that will mitigate a metabolic 
bottleneck, preferably using an enzyme without feedback inhibition; 
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b) overexpression of multiple enzymes to ensure there is adequate flux throughout 
the entire pathway; 

c) expression of regulatory proteins to coordinately induce an entire endogenous 
pathway without the introduction of heterologous enzymes; 

d) suppression of a competitive pathway or branch point to ensure flux in the 
appropriate direction 

e) creation/enlargement of a metabolic sink which reduces feedback inhibition 
and allows the desired product to accumulate stably. 

The first two strategies are most commonly used. They support the introduction of 
various structural genes from other plants to create a recombinant biosynthesis pathway. 
Moreover, other parameters should be included. For example, for the overexpression of 
flavonoids, it is necessary to control structural gene overexpression or gene silencing, 
transcriptional regulation, flow control, and transporter overexpression (Wang et al., 
2011). 

Some examples of successful metabolic engineering in hairy root cultures are 
presented here. Park et al. (2021) showed that the maize transcription factor Lc (ZmLc) 
and Arabidopsis transcription factor PAP1 (AtPAP1) can enhance the production of 
flavonoid compounds baicalin, baicalein, and wogonin in hairy root cultures of Scutellaria 
baicalensis. The mechanism of enhancement is the comprehensive upregulation of 
flavonoid biosynthesis pathway genes (SbPAL1, SbC4H, Sb4CL, and UBGAT by ZmLc and 
SbPAL1, SbPAL2, SbPAL3, SbC4H, Sb4CL, SbCHI, and UBGAT by AtPAP1). Total flavonoid 
content increased by 322% using ZmLc and by 532% using AtPAP1. 

Li et al. (2020a) focused on MYB transcription factors that play a key role in the 
phenylpropanoid biosynthetic pathway. Scientists constructed an overexpression system 
for four R2R3-MYBs in Fagopyrum tataricum resulting in tissue-specific expression of these 
genes and successive upregulation of phenylpropanoid biosynthesis. 

Park et al. (2012) improved the production of rutin in Fagopyrum esculentum by 
overexpression of the flavonol-specific transcription factor AtMYB12 in hairy roots. This 
led to the increased expression of flavonoid biosynthetic genes (phenylalanine ammonia 
lyase, cinnamate 4-hydroxylase, 4-coumarate: CoA ligase, chalcone synthase, chalcone 
isomerase, flavone 3-hydroxylase, flavonoid 3'-hydroxylase, and flavonol synthase) and 
accumulation of rutin up to 0.9 mg/g dry weight. 

Piao et al. (2021) investigated the expression of key regulators of anthocyanin 
biosynthesis in Antirrhinum majus hairyroots – genes bHLH AmDelila and R2R3-MYB 
AmRosea1. Ectopic expression of AmRosea1 resulted in strongly enhanced anthocyanin 
accumulation by upregulation of the expression of the key target structural genes in their 
biosynthesis pathway. Another group (Qin et al., 2021) studied the anthocyanin regulatory 
gene LcMYB1 Litchi chinensis. The highly efficient transformation led to the induction of 
transgenic cultures with overexpression of LcMYB1 and high content of anthocyanidins (3 
mg/g FW) and proanthocyanidins (nearly 15 mg/g FW). Xu et al. (2020) studied the 
functions of anthocyanin-related regulatory gene PpMYB10.1 and the strong activation of 
PpUFGT and PpGST downstream genes in hairy roots of peach. Li et al. (2016) focused on 
regulating anthocyanin and proanthocyanidin biosynthesis using bHLH complexes in 
Medicago truncatula. Complementation or overexpression of MtTT8 resulted in the 
achievement of 100 μg/g FW of total soluble proanthocyanidins (e.g., epicatechin) and over 
1600 μg/g FW of total insoluble proanthocyanidins in hairy roots. Yoshida et al. (2015) 
showed that MYB134 transcription factor overexpression leads to a high proanthocyanidin 
phenotype in poplar. They researched MYB182 transcription factor down-regulation of 
proanthocyanidin biosynthesis (shikimate pathway genes) by repressing both structural 
and regulatory flavonoid genes. Pang et al. (2013) studied proanthocyanidin pathway 
enzymes from tea (Camellia sinensis). Expression of the CsLAR (leucoanthocyanidin 
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reductase) gene in tobacco led to the overproduction of anthocyanins and accumulation of 
higher levels of epicatechin, which may suggest the role of this gene in flavan-3-ol 
biosynthesis. Research by Terrier et al. (2009) concentrated on the study of 
proanthocyanidins in Vitis vinifera. Ectopic expression of VvMybPA transcription factors in 
hairyroots induced changes in the accumulation of proanthocyanidins up to 8 mg/g FW 
and activation of the flavonoid enzymes pathway, including anthocyanidin reductase and 
leucoanthocyanidin reductase 1, the specific terminal steps in the biosynthesis of 
epicatechin and catechin, respectively. An earlier study by Damiani et al. (1998) showed 
that adding maize gene Sn, which transactivates the anthocyanin pathway, initiated the 
pigmentation in 50% of transgenic lines. 

Chen et al. (1999) transferred the farnesyl diphosphate synthase (FDS) gene into the 
hairy roots of Artemisia annua, which resulted in 3–4 times higher content of artemisinin 
than in the control hairy roots. Another study focused on artemisinin production boost was 
performed by Shi et al. (2017). They reported the simultaneous overexpression of four 
transferred artemisinin biosynthetic pathway genes in hairy roots: ADS, CYP71AV1, CPR, 
and ALDH1. Artemisinin contents increased significantly, with the highest being 3.4-fold 
higher than the control.  

Bavage et al. (1999) studied the condensed tannins (proanthocyanidins) 
accumulation in Lotus corniculatus hairyroots. Dihydroflavonol reductase (DFR) gene from 
Antirrhinum majus was expressed, which resulted in several high-producing clones. The 
content of condensed tannins in hairy root lines exceeded control by 170%. 

In addition, noteworthy advantages of using hairy roots are the possibility of 
extracellular secretion of expressed proteins (also known as rhizosecretion) and the ability 
to produce complex compounds at a large scale. This enables the expression of 
recombinant proteins by hairy root cultures grown in a bioreactor and their secretion into 
the culture medium under controlled and limited conditions. For example, mouse 
monoclonal antibodies from hairy tobacco roots were obtained for the first time in 1997 
(Wongsamuth & Doran). Subsequently, other recombinant proteins were produced: green 
fluorescent protein (GFP) (Medina-Bolívar & Cramer, 2004), human acetylcholinesterase 
(Woods et al., 2008), mouse interleukin (Liu et al., 2009), sweetener thaumatin (Pham 
et al., 2012), human interferon-α2b (Luchakivskaia et al., 2012), human EPO (rhEPO) 
(Gurusamy et al., 2017), alpha-L-iduronidase (Cardon et al., 2019) and others. Thus, 
numerous heterologous proteins have been obtained using expression systems based on 
hairy roots, including antigens, antibodies, enzymes, and immunomodulators. 
 

1.9.  Effect of cultivation parameters on metabolites production in hairy roots 
 

For the production of secondary metabolites (SMs) in vitro, researchers have to 
optimize all the needed parameters for the growth of hairy root cultures. Cultivation 
conditions and nutrient media are the main groups of the parameters (Fig. 8). 

Certain cultivation conditions (temperature, lighting, agitation, aeration) have to be 
ensured to reach the optimum plant growth parameters. The usual constant temperatures 
for cultivation are around 24°C. Lighting is often provided as 16 hours of light per day. 
However, 24-hour lighting is also possible for some cultures in bioreactors. Agitation is 
necessary to ensure gas exchange (aeration) in liquid media. 

Nutrient media are a source of all necessary substances for the growth and 
development of plant cultures. Standard media use provides easy reproducibility of 
experiments and the possibility to compare the results with the works of other researchers. 
Murashige & Skoog (MS) medium (1962) is the most commonly used standard nutrient 
medium for cultivating hairy roots and other plant cultures. Schenk & Hildebrandt (SH) 
medium (1972) and Gamborg (B5) medium (1968) are also used for this purpose. 
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Any nutrient medium for in vitro plant cultures should have the following components: 
macrocomponents (N, S, P, Ca, K); microcomponents (Mn, Cu, B, Cl, Co, Mo, Zn, I); vitamins; 
source of Fe; source of Carbon. Not only the nutrient content of the medium is important but 
also its pH since plants grow only in a certain diapason of acidity. The pH from 5.5 to 5.9 is 
suitable for most species. Also, variable components are sometimes added: amino acids, 
growth regulators, and elicitors. Growth regulators are put in not only to maintain some 
cultures in vitro but also are added to obtain callus cultures (and suspension cultures from 
them), plant regeneration, rhizogenesis, or multiple shoot formation. Thus, by changing the 
composition of the nutrient medium, it is possible to obtain new plant cultures in vitro from 
already existing ones, as well as to investigate the totipotency of certain types of plants or to 
select and optimize media for their microclonal propagation. 

The growth and production of SMs are often antagonistic due to competition for the 
same precursors. Sometimes it is necessary to change the cultivation parameters to achieve 
a high amount of the target compounds. Biosynthetic precursors and elicitors are widely 
used for this purpose. To familiarize ourselves with the concept of elicitors, we should 
revise the significance of secondary metabolites for plant cells and plant organisms in 
general. SMs participate in plant protection and communication with the environment. In 
addition, they are related to the color, taste, and smell of plants. Notably, they are also 
involved in plant responses to stress, both biotic (plant pathogens) and abiotic 
(temperature, drought, salinity, and UV light). Facing such stressors, plants can change 
their morphological characteristics (number of leaves or branches, leaf area, root height, 
and volume) along with their metabolism (Jan et al., 2021). Indeed, plants have a broad set 
of defense mechanisms that allow them to cope with stress conditions at the metabolomic 
level and enhance the accumulation of SMs during stress. Threat signals are recognized by 
plant receptors. This ensures a protective reaction, one of which is the accumulation of 
secondary metabolites. Transcription factors play an essential role in plant defense control 
by detecting stress signals and directing the expression of defense genes. Similarly, plant 
survival, longevity, and productivity depend on the increased synthesis of SMs known as 
elicitation. Various biotic (fungi, bacteria, etc.) and abiotic (exogenous hormones) elicitors 
are used to enhance the production of SMs in plants to protect them against stress stimuli. 
Thus, elicitors are compounds that, even in very small concentrations, contribute to the 
strengthening of secondary metabolism to protect the cell and the whole plant from 
various factors. Depending on the origin, elicitors can be classified into biotic and abiotic. 

Biotic elicitors can be exogenous and endogenous. Exogenous elicitors come from 
pathogens (their enzymes, lysates, polysaccharides, and glycoproteins). Endogenous 
elicitors are produced by plants as a reaction to these pathogens (plant polysaccharides, 
proteins, and low-molecular compounds). Abiotic elicitors are subdivided into physical 
(e.g., UV light), chemical (inorganic compounds, e.g., sodium nitroprusside or cupric oxide), 
and hormonal (e.g., jasmonates and salicylic acid). Sometimes nanoparticles belong to the 
third group of elicitors and are called nanoelicitors. Salicylic and acetylsalicylic acid, 
chitosan, coronatine (a bacterial toxin), jasmonic acid and methyl jasmonate, pectin, and 
yeast extract are the main currently used elicitors. Elicitors could be added both in vitro 
and ex vitro individually and as a whole complex of elicitors simultaneously. 

Now, let us review some specific examples regarding cultivation parameters and 
elicitors. Shinde et al. (2010) investigated the effects of media constituents on the 
production of the phytoestrogenic isoflavones daidzein and genistein in hairy roots of 
Psoralea corylifolia. It was found that supplementation of the medium with NH4+ and NO3- 
at a ratio of 2:1 increased the biomass and productivity of cultures. Increased levels of 
sucrose resulted in a higher yield of daidzein. However, decreased sucrose levels favored 
genistein production. The highest levels of daidzein (2.06% dry wt.) and genistein (0.37% 
dry wt.) were produced in the presence of low concentrations of PO43-.  
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Figure 8 – Optimization strategies for secondary metabolites production in hairy 
root cultures in vitro 
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Jia et al. (2017) showed that salt stress (85 mM NaCl) slightly induced isoflavone 
accumulation and salt tolerance in control (without additional genes) soybean hairy roots. 
However, there was a substantial reduction in the maximum root length, root fresh weight, 
and relative water content. Other cultures of hairy roots that carried the hrGmIFS1 gene 
had a significantly higher content of isoflavones, and the mentioned above root growth 
parameters decreased much less. Then, this gene was transferred to tobacco plants.  This 
resulted in greater plant height and leaf fresh weight after treatment with NaCl, thus 
confirming better salt tolerance. In addition, the leaf antioxidant capacity of tobacco 
became significantly higher. 

Kim et al. (2012a) optimized nutrient medium for the best growth and flavone 
production in Scutellaria baicalensis hairy roots. Hairy root grown in full-strength SH medium 
was the highest (0.32 g/30 mL). The highest content of flavones baicalin, baicalein, and 
wogonin was detected in hairy roots grown in a half-strength B5 medium. Auxin treatments 
did not affect hairy root growth rates. However, flavone production was increased while using 
auxin indole acetic acid at 1 mg/L. Meanwhile, the highest levels of wogonin were observed in 
the presence of indolebutyric acid at 1 mg/L, followed by IAA at 0.1 mg/L. 

Park et al. (2016) studied another parameter of medium optimization for flavonoid 
accumulation in hairy roots of Scutellaria baicalensis – the influence of different 
carbohydrates. Seven carbohydrate sources (sucrose, fructose, glucose, galactose, sorbitol, 
mannitol, and maltose) at a concentration of 100 mM were used for supplementation of a 
half-strength B5 liquid medium. Major flavones production was affected by sucrose, 
galactose, and fructose. Interestingly enough, different carbohydrates stimulated the 
production of different flavonoids. Sucrose was the optimal carbon source for the 
enhancement of baicalein production, fructose caused the greatest increase in baicalin 
accumulation, and galactose was the optimal carbon source for wogonin production. 

Tusevski et al. (2013) showed that dark-grown and photoperiod-exposed hairy root 
cultures of Hypericum perforatum differed in phenolic acids, flavonols, flavan-3-ols, and 
xanthones accumulation. Light served as the elicitor for the quinic acid, kaempferol, and 
seven identified xanthones production. Moreover, two phenolic acids, three flavonol 
glycosides, and five xanthones were synthesized in light-exposed cultures de novo. On the 
other hand, dark-grown cultures had a higher content of flavan-3-ols (catechin, epicatechin, 
and proanthocyanidin dimers). 

Zhang et al. (2018) investigated another type of light wave as a possible physical 
elicitor (far-red, white, blue, and red) for the enhancement of artemisinin accumulation in 
Artemisia annua. The results showed that red and blue light could enhance artemisinin 
production by inducing the expression of the genes involved in artemisinin biosynthesis 
(ADS and CYP71AV1). 

Tashackori et al. (2016) examined the action of mycelium extract of Piriformospora 
indica as a biotic elicitor for hairy roots of Linum album. This extract enhanced the phenolic 
acids accumulation even after 12 h treatment and on lignans after 24 h treatment. The 
content of flavonols increased after 48 h treatment, and the levels of phenols and 
flavonoids were significantly enhanced after 72 h treatment (up to 422.69µg g−1 DW of 
phenols and 15.41µg g-1 DW of flavonoids). The activity of phenylalanine ammonia-lyase 
increased and peaked at 24 h after treatment. Another research by these authors 
(Tashackori et al., 2021) showed that digested cell wall of P. indica boosted this plant's 
metabolism and antioxidant activity. SOD (superoxide dismutase) and GPX (glutathione 
peroxidase) activity increased significantly. The expression of several genes (PAL, CCR, 
CAD, and PLR) was also enhanced. 

Fattahi et al. (2021) explored the effect of methyl-β-cyclodextrins and coronatine 
(individually and combined) on tropane alkaloids accumulation in Atropa acuminata and A. 
belladonna hairy roots. In A. belladonna all the treatments reduced alkaloid production, 
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while in A. acuminata, coronatine elicitation increased the scopolamine content 10-fold 
compared to the control (10.95 mg/g DW). 

Jiao et al. (2017) investigated the action of immobilized food-grade fungi Aspergillus 
niger in a cocultivation system with Astragalus membranaceus hairy roots. The enhanced 
production of calycosin (730.88 ± 63.72 μg/g DW, 7.72-fold higher than in nontreated 
control) and formononetin (1119.42 ± 95.85 μg/g DW, 18.78-fold higher than in 
nontreated control) were achieved after 54 h cocultivation. 

Vaccaro et al. (2017) showed that coronatine elicitation is effective for the 
accumulation of aethiopinone (abietane diterpenes) in Salvia sclarea hairy roots. Moreover, 
prolonged exposure to coronatine does not inhibit hairyroot growth, a common 
disadvantage of methyl jasmonate treatment. Coronatine addition yielded 24-fold higher 
content (up to 105.34 ± 2.30 mg/L) of aethiopinone after 28 days. 

Jiao et al. (2018) studied ultraviolet radiation as a physical elicitor of flavonoid 
production in the hairy roots of Isatis tinctoria. Maximum flavonoid accumulation in the 
hairy roots treated with 108 kJ/m2 dose of UV-B radiation increased 16.51-fold compared 
to that in the control. The antioxidant activity was enhanced as well. Moreover, the 
expression of the chalcone synthase gene was tremendously up-regulated (up to 405.84-
fold), which may suggest the role of this gene in flavonoid accumulation. 

Pitta-Alvarez et al. (2000) tested salicylic acid, yeast extract, AgNO3, CaCl2, and CdCl2 
on the tropane alkaloids accumulation in Brugmansia candida hairy roots. Salicylic acid 
enhanced alkaloids production from 2- to 12-fold, yeast extract increased alkaloids 
accumulation 3-fold (and scopolamine 7-fold), AgNO3 – from 5- to 8-fold, CdCl2 – from 3- to 
24-fold (but was highly detrimental to growth) and CaCl2 had no significant effect. 

Naeem et al. (2020) investigated the action of salicylic acid and toxic arsenic 
(individually and combined) on the antioxidants and artemisinin accumulation in Artemisia 
annua. The addition of Arsenic at 45 mg kg-1 reduced the overall performance of plants, and 
at the same time enhanced the levels of antioxidants. Further addition of salicylic acid 
increased these antioxidants and the yield of artemisinin even more.  

Peng et al. (2023) studied the effect of microwave and l-phenylalanine (individually 
and combined) on Tartary buckwheat sprouts. The best treatment condition was the 
combination of 250 W microwaves and 2.9 mmol L-1 l-phenylalanine. Specific activities of 
PAL (phenylalanine ammonia-lyase), CHI (chalcone isomerase), and FLS (flavonol 
synthase) in 5-day-old sprouts increased by 47.84%, 53.04%, and 28.02% compared with 
the control. The expression of the corresponding enzyme genes FtPAL, FtCHI, and FtFlS1 
increased by 39.84%, 24.78%, and 33.72% compared with the control. 

Demirci et al. (2020) explored the effect of 24-epibrassinolide and l-phenylalanine 
on the root growth, total phenolics, total flavonoids, and caffeic acid derivatives 
accumulation in hairy roots of Echinacea purpurea. Treatment with 0.5 mg L−1 24-
epibrassinolide for 50 days resulted in the highest fresh root weight, dry root weight, and 
growth index, while l-phenylalanine had no significant influence on root growth. Moreover, 
24-epibrassinolide at 1.0 mg L−1 concentration was found as the optimum for the 
accumulation of the highest total phenolics, total flavonoids, cichoric acid, caftaric acid, 
echinacoside, and p-coumaric acid contents. 

Ghimire et al. (2019) examined the effect of methyl jasmonate and yeast extract 
elicitors on the enhancement of phenolic compounds accumulation in the hairy roots of 
Aster scaber. Higher fresh and dry root biomass was obtained after the elicitation with 100 
mg/L of yeast extract. A more significant increase in total phenolics and flavonoid 
production was reached after the elicitation with methyl jasmonate. However, by the 
results of the research, both elicitors can be efficiently used for phenolic compounds 
accumulation: increased content of hydroxycinnamic acids, seven flavonols, seven 
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hydroxybenzoic acids, vanillin, homogentisic acid, and resveratrol were found after 
addition of either elicitor. 

Krzemińska et al. (2022) tested four elicitors (yeast extract, methyl jasmonate, 
trans-anethole, and cadmium chloride) on Salvia bulleyana hairy roots. They found that 
methyl jasmonate was the most effective. Phenolic compound accumulation increased by 
around 100% (up to 124.4 mg/g dry weight) after 72 h treatment. Strong antioxidant 
activity (scavenging of DPPH, ABTS, and superoxide anion radical) was also enhanced. 

Gharari et al. (2020) explored the effect of methyl jasmonate, methyl-b-cyclodextrin, 
and chitosan (individually and combined) on the hairy roots of Scutellaria bornmuelleri. 
Accumulation of chrysin, wogonin, and baicalein increased 9.15…13.25 times after 
elicitation with methyl jasmonate combined with chitosan. Moreover, such a combination 
enhanced the expression of two significant genes involved in the flavonoid biosynthesis 
pathway, FNSII-2, and MYB7. 

Pilaisangsuree et al. (2018) studied the action of cyclodextrin and methyl jasmonate 
(individually and combined) on the hairy roots of the peanut plant. Treatment with 
cyclodextrin enhanced the antioxidant activity to the highest Trolox equivalent antioxidant 
capacity value (28.30 ± 2.70 mM Trolox/g DW) and induction of CuZn-SOD (CuZn 
superoxide dismutase) and APX (ascorbate peroxidase) antioxidant enzymes activity. Co-
treatment resulted in the highest phenolic content and, surprisingly, a decrease of CuZn-
SOD, GPX, and APX activity. 

Jain & Singh, S. (2015) examined the effect of pectin, yeast extract, and methyl 
jasmonate on the Solanum melongena hairyroots. Pectin treatment was found to be the 
most efficient to enhance solasodine production (151.23 μg/g DW) representing a 23-fold 
increase compared to control hairy roots and up to 88-fold compared to field-grown plants. 
Chung et al. (2018) investigated the influence of biologically synthesized silver 
nanoparticles on glucosinolates and phenolic compounds accumulation in the hairy roots 
of Brassica rapa. The study showed a significant increase in glucosinolates (glucoalyssin, 
glucobrassicanapin, sinigrin, progoitrin, gluconapin, 4-methoxyglucobrassicin, 4-
hydroxyglucobrassicin, glucobrassicin, neoglucobrassicin, and gluconasturtiin) and 
phenolic compounds (flavonols, hydroxybenzoic, and hydroxycinnamic acids) production 
in elicited hairy roots. Moreover, biological (antioxidant, antimicrobial, and anticancer) 
activities became significantly higher. 

Nourozi et al. (2019) showed that elicitation of Dracocephalum kotschyi hairy root 
cultures with iron nanoparticles enhanced biomass accumulation. In addition, antioxidant 
enzyme activity and rosmarinic acid content increased (1194 μg g-1 FW) after 24 h of 
exposure to 75 mgL-1 iron nanoparticles. The content of xanthomicrol, cirsimaritin, and 
isokaempferide increased by 11.87, 3.85, and 2.27-fold, respectively. 

All the mentioned above research studies show that it is possible to optimize 
nutrient medium and cultivation conditions plus find suitable elicitors for the maximum 
yield of target compounds in hairy root cultures. In addition, some elicitors using provides 
induction in the synthesis of diverse compounds de novo. Thus, hairy roots can be the 
unique and universal bioproducers of valuable phytochemicals. 

 
1.10. CRISPR/CAS and hairy roots 

 
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are direct 

repeats and unique sequences in the DNA of many bacteria and most of known archaea that 
protect the cell from foreign genetic elements (bacteriophages, plasmids). 

CRISPR systems and divided into two categories according to the configuration of 
their effector modules in the latest classification (Guo et al., 2022). Class 1 effectors utilize 
multi-protein complexes (type I, III, and rarely IV). Class 2 effectors rely on single-
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component effector proteins to disrupt target genes represented by Cas9, including types 
II, V, and VI. CRISPR/Cas9 belongs to type II and is currently the most widely used and 
thoroughly studied genome editing tool. It allows influencing precisely on biosynthetic 
pathways of the necessary target compounds. 

Such high precision in gene editing is possible due to the induction of breaks (mostly 
double-strand breaks) at specific genome locations using site-directed nucleases (Bezie et 
al., 2021). Before CRISPR/Cas, scientists used zinc finger nucleases (ZFNs) and 
transcription activator-like effector nucleases (TALENs). The necessity to develop amino 
acid motifs that would bind to the desired target sequence with high affinity and specificity 
is the main disadvantage of these techniques (Scheben et al., 2017). It is very difficult, time-
consuming, and expensive. Unlike ZFNs and TALENs, the CRISPR/Cas9 approach relies on 
homological base pairing between nucleic acids that ensure the targeting of the specific site 
in the genome. Thus, CRISPR/Cas is much more used nowadays due to its simplicity and 
high efficiency (Guo et al., 2022). The simplified scheme of producing CRISPR/Cas-gene 
edited medicinal plants is presented in Fig. 9. At first, the target gene should be chosen. 
Then, CRISPR/Cas vector is constructed. After that, the vector carrier is chosen and 
assembled. All methods of direct and Agrobacterium-mediated transformation could be 
used. Concerning agrobacterial transformation, both A. tumefaciens and A. rhizogenes can 
be applied. For that, a full genome sequence of the used agrobacterial strain (both 
chromosome and Ri-plasmid) is needed. 

However, A. tumefaciens-mediated delivery of CRISPR reagents has its bottlenecks 
(Rodrigues et al., 2021): vector delivery to the plant cell nuclei and the subsequent plant 
regeneration. For both processes, the efficiency depends highly on species and genotype 
(Altpeter et al., 2016). To solve these two main problems, some recent progress was made 
with the use of morphogenic regulators that increase regeneration (Gordon-Kamm et al., 
2019; Maher et al., 2020) and ternary plasmids for A. tumefaciens equipped with extra 
virulence genes (Anand et al., 2018; Sardesai et al., 2018; Bahramnejad et al., 2019; Desmet 
et al., 2020). Another possible solution is using A. rhizogenes and the induction of 
hairyroots. This method is promising, as hairy roots could be used without whole-plant 
regeneration, do not need additional plant growth regulators, and can quickly produce a lot 
of biomass. And if plant regeneration is still necessary, it is possible with the selected and 
optimized nutrient media. Moreover, there is a new approach in combination with 
transient A. rhizogenes-mediated ex vitro hairyroot induction and the CRISPR/Cas9 
technique (Alok et al., 2017; reviewed in Niazian et al., 2022). It is a revolutionary method 
for fast and precise functional validation of root-related candidate genes. 

Now, let us consider CRISPR/Cas-gene editing more precisely.  Usually, the scientists 
choose target genes, editing which will cause the desired change in plant biosynthesis. For 
that, a full plant genome sequence and a thoroughly studied synthesis of the desired 
compound are needed. There are three pathways of secondary metabolites (SMs) 
biosynthesis: shikimate, acetate-mevalonate, and acetate-malonate (required mainly for 
primary metabolites synthesis – fatty acids and their derivatives, and only some aromatic 
SMs). All of them have their characteristics, and each of them is needed for the synthesis of 
secondary metabolites of a certain group. There are three main groups of SMs based on 
their structure and metabolic pathways: phenolic compounds, terpenoids, and nitrogen-
containing compounds (alkaloids and glucosinolates). All their biosynthesis pathways are 
closely related (Borrelli et al., 2016; Mohaddab et al., 2022).  

The shikimate pathway is linked with aromatic compound precursors synthesis in 
plants, fungi, and bacteria (but not animals). This biosynthetic pathway converts simple 
sugars from glycolysis and the pentose phosphate pathway into aromatic amino acids. 
Phenylpropanoids, precursors of such important SMs as flavonoids, coumarins, tannins, 
and lignins, are synthesized from these aromatic amino acids. In addition, the shikimate 
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pathway provides the synthesis of nitrogen-containing SMs, such as alkaloids and 
glucosinolates, and some phytohormones, for example, β-indoleacetic acid.  

 
 
 

Figure 9 – A simplified scheme of generating CRISPR/Cas-gene editing medicinal 
plant lines (Guo et al., 2022) 
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The acetate-mevalonate pathway is associated with isoprenoids – precursors of all 
terpenoids that are the components of plant essential oils. Terpenoids include: 
monoterpenes/terpenoids C10, sesquiterpenes C15, diterpenes C20, triterpenes C30, 
carotenoids/tetraterpenes C40 and polyterpenes (cytokinins, gutta-percha, gum) C>40. In 
addition to plants, the acetate-mevalonate pathway functions in many other organisms, 
from archaea to animals. Steroids, coenzyme Q10, cholesterol, sex hormones, and vitamins 
A and K are also synthesized in animals thanks to this biosynthetic pathway.  

Therefore, using CRISPR/Cas-gene editing, it is possible to influence and modify 
these biochemical pathways, thereby increasing the value of a particular medicinal plant. 

In addition, the process of designing CRISPR targets is greatly simplified by using 
web tools (Liu et al., 2019).  

a) Resources for designing/cloning single CRISPR targets can be found at 
http://stuparcrispr.cfans.umn.edu/CRISPR 

b) Resources for designing/cloning multiple CRISPR targets can be found at 
http://cfanspmorrell.oit.umn.edu/CRISPR_Multiplex.  

c) Several other web tools are publicly available for target design. Vector 
information is also available at http://www.addgene.org. 

When the target gene is determined, CRISPR/Cas9 vector has to be constructed and 
assembled (Fig. 10). Attention should be paid to the following four aspects (Kiryushkin et 
al., 2021):  

a) which promoters to use to drive the expression of genes encoding different 
Cas nucleases;  

b) which Cas-based system to use;  
c) the design and construction of guide RNAs (gRNAs) and the assessment of 

their efficiency;  
d) the choice of genes encoding markers for the identification of transgenic 

roots. 
 

 

 
 

Figure 10 – Simplified map of a CRISPR/Cas9 vector. Vector components 
(clockwise): RB – right T-DNA border; CRISPR cassette – cassette expressing the guide 
RNA; NLS – nuclear localization signal; Cas9 – CRISPR-associated nuclease; LB – left T-DNA 
border (Kiryushkin et al., 2021). 

DOI: https://doi.org/10.15414/2023.9788055226408

http://stuparcrispr.cfans.umn.edu/CRISPR
http://cfanspmorrell.oit.umn.edu/CRISPR_Multiplex
http://www.addgene.org
https://doi.org/10.15414/2023.9788055226408


 
 

38 

Cauliflower Mosaic Virus (p35S) promoters and their variants (2xp35S, 2xp35SΩ, 
p35SPPDK) are the most commonly used promoters. They are strong constitutive 
promoters used worldwide. Other promoters including Ubi (ubiquitin promoters from 
Arabidopsis, parsley, maize, rice, soybean, etc.) or pActin (promoter of the Arabidopsis actin 
2 gene), as well as inducible or organ- and tissue-specific promoters can also be used. Some 
enhancers may be added as well.  

Cas nucleases, which can be utilized for genome editing, fall into the following three 
large groups:  

a) those that can introduce double-stranded DNA breaks;  
b) those that introduce single-stranded breaks;  
c) those that do not introduce breaks.  

The first group is the most common, and the Cas9 endonuclease of Streptococcus 
pyogenes and its modified versions are used for this purpose. Nickase form of Cas9 (nCas9) 
is used for single-stranded breaks introduction. The catalytically inactive (dead) form of 
Cas9 (dCas9) is used for editing without breaks. 

The gRNA consists of the following two parts: 17–20-bp CRISPR RNA (crRNA) and 80-bp 
trans-activating crRNA (tracrRNA) (Kiryushkin et al., 2021). The crRNA is complementary to the 
target genomic DNA, and the conserved tracrRNA functions as a binding scaffold for a Cas 
nuclease (it is usually already incorporated in the CRISPR/Cas vector backbone).  

Both selectable and screenable (visually) markers are commonly used for the 
reliable identification of transgenic hairy roots. Selectable markers include mostly genes 
that encode resistance to antibiotics (such as the nptII gene encoding neomycin 
phosphotransferase II that gives resistance against neomycin and kanamycin) or 
herbicides (such as bar gene encoding resistance to phosphinothricin/glufosinate). Widely 
used screenable markers include β-glucuronidase (GUS, a product of the uidA gene, which 
converts a soluble colorless substrate 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid into 
an insoluble colored product chloro-bromoindigo) and GFP. After the successful vector 
construction, plant transformation is carried on. Hairy root lines must be screened using 
PCR methods, and some metabolomic studies should be done. These analyses will help to 
verify whether the desired gene was inserted and what product was obtained.  

Thus, CRISPR/Cas9 combined with hairy roots induction represents a fast and 
effective means of studying gene function (Bhattacharya et al., 2020; Kiryushkin et al., 
2021; Jedličková et al., 2022; Niazian et al., 2022). It can be used for modification of plant 
traits when no stable transformation and regeneration procedures are available/possible 
or when the targeted characteristic is only observed in roots. Moreover, it results in much 
desirable quick obtaining of the transgenic biomass. As it was mentioned earlier, more than 
20 strains of A. rhizogenes (wild-type or generated via genome engineering) (Bahramnejad 
et al., 2019) and more than 400 plant species (Porter, 1991) are currently available for 
hairyroot transformation. However, only 14 A. rhizogenes strains and about 30 plant 
species have been used in genome editing experiments to date (Kiryushkin et al., 2021). 
Some of these strains are transconjugant, i.e. they derive from other strains that were 
“cured” of pTi (usually strain C58). For example, the LBA1334 strain has the C58C9 
chromosomal background and rifampicin resistance (Díaz et al., 1989). 

The first paper on the CRISPR/Cas-mediated genome editing that could be used to 
investigate gene function in both plant protoplasts and whole plants was published in 2013 
by Belhaj et al. Since then, scientists were interested in the genome editing capability 
concerning hairy roots, i.e. whether such a technique is applicable at all. These early 
successful studies include research on Solanum lycopersicum (tomato) (Ron et al., 2014 – 
first paper on CRISPR/Cas and hairy roots), Glycine max (soybean) (Michno et al., 2015; Cai 
et al., 2015), Taraxacum kok-saghyz (rubber dandelion) (Iaffaldano et al., 2016), Arachis 
hypogaea (peanut) (Yuan et al., 2019), and Cichorium intybus (chicory) (Bernard et al., 
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2019). Iaffaldano et al. (2016) and Bernard et al. (2019) showed that CRISPR/Cas9 could 
be used for the successful incorporation of studied genes. They also obtained the 
regeneration of whole genome edited dandelion and chicory plants. Nowadays, there are 
many more possible applications and research tasks solved by CRISPR/Cas9 genome 
editing in hairyroots (Fig. 11):  

a) root nodule symbiosis investigation:  
o nodules formation (Shu et al., 2020; Tang et al., 2016; Fan et al., 2017; Fan et 

al., 2020; Lu et al., 2020; Xu et al., 2021; Wang et al., 2016; Wang et al., 2018; 
Yang et al., 2017); 

o Rhizobial early infection events (Zhu et al., 2020); 
b) metabolic engineering:  

o tropane alkaloids metabolic pathway (Hasebe et al., 2021); 
o isoflavone metabolic pathway (Uchida et al., 2019); 
o glycyrrhizin (glycyrrhizic acid) content (Zhang et al., 2021; Wang et al., 2021); 
o camptothecin production (Shi et al., 2020); 
o salicinoid content (Fellenberg et al., 2020); 
o gallic acid and its glicosides content (Changetal., 2019); 
o tashinones content (Li et al., 2017); 
o lithospermic acid and its precursors (Zhou et al., 2018); 
o phenolic acid and tashinones content (Deng et al., 2020); 
o salvinalonic acid B, tashinones, rosmarinic and caffeic acids content (Hao et 

al., 2020; Yu et al., 2022; Zhou et al., 2021); 
o lignin biosynthesis pathway (Zhou et al., 2021); 
o α-tomatine and dehydrotomatine biosynthesis pathway (Akiyama et al., 

2019; Swinnen et al., 2020); 
o α-solanine and α-chaconine biosynthesis pathway (Nakayasu et al., 2018); 
o honospermydine content (Zakaria et al., 2021); 

c) root development:  
o root hairs formation (Kirchner et al., 2017); 
o lignin biosynthesis (Dai et al., 2020); 
o root to shoot Na+ and K+ transport (Niu et al., 2020); 
o endodermis development (Triozzi et al., 2021); 
o meristem size (Ron et al., 2014); 

d) investigation of resistance to abiotic stress conditions:  
o sensitivity to the drought (Du et al., 2020); 
o sensitivity to salinity (Li et al., 2021; Sun et al., 2021); 

e) investigation of resistance to the biotic stress conditions:  
o resistance to soybean cyst nematode (Butler et al., 2021; Dong et al., 2022); 
o resistance to Phytophthora sojae (Yu et al., 2022); 
o interaction between hemiparasitic plant Phtheirospermum japonicum and 

Arabidopsis (Greifenhagen et al., 2021); 
o tolerance to Candidatus Liberibacter solanacearum (Irigoyen et al., 2020); 

f) supervirulent A. rhizogenes strains obtaining:  
o comparative analysis of agrobacterial genomes and identification of the parts 

that affect their virulence (Anand et al., 2018; Sardesai et al., 2018; 
Bahramnejad et al., 2019; Desmet et al., 2020); 

g) commercial traits development:  
o plant architecture, photoperiod and circadian rhythmicity, storage proteins, 

seed oil, been flavor-free soybeans, seed weight, and organ size (reviewed in 
Xu et al., 2020 and Xu et al., 2022); 

h) improvement of flowering ornamental plants (Pérez de la Torre et al., 2018). 
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Figure 11 – Possible applications and research tasks solved using CRISPR/Cas9 
genome editing in hairy roots 

 
 
 

 

DOI: https://doi.org/10.15414/2023.9788055226408

https://doi.org/10.15414/2023.9788055226408


 
 

41 

1.11. Hairy roots of medicinal plants 
 
Medicinal plants, as seen from their common name, are used directly to treat 

diseases or obtain certain biologically active compounds with a therapeutic effect. It should 
be noted that not only so-called medicinal plants synthesize biologically active compounds. 
Almost every plant is medicinal because it contains chemical components with different 
bioactivity. These components can be secondary metabolites, reserve, or protective 
chemicals. However, the amount of such valuable compounds in plants is usually low. It is 
possible to increase their concentration by stimulating synthesis in plant cells in various 
ways since even growing conditions significantly affect biosynthesis processes. 

At the same time, hairy root construction can serve as an interesting and promising 
approach to obtaining producers of valuable medicinal compounds from plant raw 
materials. Biotechnological usage of hairy roots is possible due to their rapid growth 
feature. They can be grown in bioreactors avoiding the vagaries of the weather. In addition, 
scientists can choose among several lines of hairy roots the one with the highest 
production of bioactive components. That is why, for more than forty years, researchers 
have been adapting methods of genetic transformation to obtain hairy roots of various 
species, developing technologies for growing them in bioreactors, investigating the 
peculiarities of the biosynthesis of chemical compounds in these roots and methods of their 
extraction. 

The list of plant species that are currently used to obtain hairy roots is very large. 
Some of them are presented in Table 3. Among them are well-known and rare plants. 

 
Table 3 – Plants used for obtaining hairy root cultures 
 

Species of plants Compounds References 
Ambrosia artemisiifolia L. thiarubrine A Bhagwath et al., 2000 

Anisodus acutangulus 
C.Y.Wu & C.Chen 

tropane alkaloids Kai et al., 2011 

Arachis hypogaea L. resveratrol, arachidin Abbott et al., 2010 
Artemisia annua L. artemisinin Putalun et al., 2007 

Artemisia vulgaris L. flavonoids, essential oil Matvieieva et al., 2019a; Sujatha et 
al., 2013 

Artemisia tilesii Ledeb. flavonoids Matvieieva et al., 2020 
Astragalus 

membranaceus L. 
triterpenes, astragalosides 

and flavonoids 
Park et al., 2015; Jiao et al., 2015 

Atropa belladonna L. alkaloids Bonhomme et al., 2000; 
Bensaddek et al., 2001 
Bonhomme et al., 2000 

Brassica rapa ssp. Rapa 
L. 

glucosinolates Chung et al., 2016a 

Brugmansia candida 
Pers. 

cadaverine Pitta-Alvarez et al., 2000; 
Carrizo et al., 2001 

Cajanus cajan (L.) HUTH isowighteone Gajurel et al., 2022 
Calendula officinalis L. Saponins (oleanane-type)/ 

cholesterol, campesterol, 
isofucosterol, sitosterol, 

stigmasterol 

Alsoufi et al., 2019a; 
Alsoufi et al., 2021; 
Alsoufi et al., 2019b 

Catharanthus roseus (L.) 

G.DON, 
flavonoids, monoterpenoid 

indole alkaloids 
Traverse et al., 2022; Chung et al., 
2009; Van Moerkercke et al., 2015 

Species of plants Compounds References 
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Species of plants Compounds References 
Centella asiatica (L.) URB centellasaponins, 

asiaticosides, 
madecassosides/ 

campesterol, cholesterol, 
sitosterol, stigmasterol 

Kim et al.,  2010 

Cichorium intybus L. inulin Bais et al., 2001; Tabatabaee 
Bais et al., 2021 

Cucumis anguria L. phenolic compounds Yoon et al.,  2015 
Datura candida Safford alkaloids Christen et al.,  1991. 
Dracocephalum kotschyi 

Boiss 
rosmarinic acid Fattahi et al.,  2013 

Echinacea purpurea (L.) 

MOENCH 
chicoric acid Salmanzadeh et al., 2019 

Erigeron breviscapus 
(Vaniot) Hand.-Mazz 

scutellarin Chen et al.,  2018 

Ferula pseudalliacea Rech. farnesiferol B Khazaeiet al., 2019 
Isatis tinctoria L. flavonoids Gai et al.,  2015 

Isatis indigotica L. lariciresinol Ma et al., 2017 
Gentiana dinarica Mann. 

Lerch. 
xanthone Krstić-Milošević et al.,  2017 

Glycine max L. flavonoids Jiang et al.,  2010 
Glycyrrhiza uralensis Fisch flavonoids Zhang et al., 2009; Yin et al., 

2020 
Gossypium hirsutum L. gossypol Vermaet al., 2009 

Helicteres isora L. diosgenin Kumar et al., 2014 
Hyoscyamus albus L.  Christen et al.,  1992. 
Hyoscyamus niger L. tropane alkaloids Zhang et al., 2007 

Hyoscyamus reticulates L. tropane alkaloids Zeynali et al.,  2016 
Lawsonia inermis L. tannin Bakkali et al.,  1997. 

Ligularia fischeri Turcz. f. 
spiciformis (Nakai) 

polyphenolic compounds Ansari et al.,  2019 

Lopezia racemosa Cav. organic extract Vargas-Morales et al.,  2022 
Macleaya cordata (WILLD.) 

R.BR. 
alkaloids Huang et al.,  2018 

Momordica charantia L. Phenolic compounds Chung et al.,  2016b 
Momordica dioica Roxb. ex. 

Willd 
phenolic compounds Thiruvengadam et al.,  2016 

Nicotiana tabacum L. alkaloid nicotine Zhao et al., 2013 
Ononis spinosa L. and Ononis 

arvensis L. 
medicarpin glucoside and 

sativanone glucoside 
Gampe et al., 2021 

Ophiorrhiza pumila Champ. 
ex Benth. 

Camptothecin Shi et al., 2020 

Panax ginseng C.A.Mey. ginsenoside Inomata et al.,  1993; 
Overfield et al., 2003; 
Kochan et al.,  2018 

Pelargonium sidoides Cand. coumarin Yousefian et al., 2020 
Platycodon grandifolium 

(Jacq.) A. DC. 
platycodins 

(oleanane-type)/ 
α-spinasterol 

Kim et al.,  2013 
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Species of plants Compounds References 

Polygonum multiflorum 
(Thunb.) Moldenke 

phenolic compounds Ho et al., 2018 

Polyscias filicifolia Bailey chlorogenic acid 
caffeic and ferulic acid 

derivatives 

Śliwińska et al., 2021 
 

Portulaca oleracea L. noradrenalin Pirian et al., 2012 
Psoralea corylifolia L. flavonoids Bourgaud et al., 1999; Shinde et al., 

2009 
Pueraria phaseoloides 

(Roxb.) Benth. 
puerarin, deoxymiroestrol Shi et al., 2003; Udomsin et al., 

2019 
Punica granatum L. tannin Ono et al., 2012 

Rauwolfia serpentine (L.) 

BENTH. ex KURZ, 
alkaloids Mehrotra et al., 2015 

Rhodiola crenulata Ohba salidroside Lan et al., 2013 
Rhodiola rosea L. salidroside, rosavinoids 

rosavin, rosarin, and rosin 
Lütken et al., 2017 

Rubia yunnanensis Diels cyclopeptides and quinones Miao et al., 2021 
Salvia miltiorrhiza Bunge tanshinone; rosmarinic acid Wu et al., 2008; Liang et al., 2012; 

Xiao et al., 2011 
Saussurea medusa Maxim jaceosidin Zhao et al., 2004 

Scutellaria baicalensis 
Georgi 

flavonoids Elkin et al., 2018; Stojakowska et 
al., 2000; Park et al., 2011; Park et 

al., 2021 
Scutellaria lateriflora L. baicalin, baicalein, wogonin Tuan et al., 2018 
Scutellaria bornmuelleri 

Hausskn. ex Bornm. 
flavonoids Gharari et al., 2020 

Silene vulgaris (Moench) 
Garcke 

sapogeninsin Kim et al., 2015 

Silybum marianum L. flavonolignan, silymarin Alikaridis et al., 2000; Rahnama et 
al., 2008; Khalili et al., 2010 

Solanum trilobatum L. solasodine Shilpha et al., 2015 
Stephania suberosa 

Forman 
dicentrine Putalun et al., 2009 

Tanacetum parthenium 
(L.) SCH.BIP. 

parthenolide Pourianezhad et al., 2019 

Taxus cuspidate SIEBOLD 
et ZUCC. ex ENDL. 

paclitaxel Kim et al., 2009 

Trachyspermum ammi L. thymol Vamenani et al., 2020 
Tribulus terrestris L. ß-carboline alkaloids Sharifi et al., 2014 
Trifolium pratense L. isoflavones Kumar et al., 2018 

Trigonella foenum-
graecum L. 

diosgenin Zolfaghari et al., 2020 

Valeriana officinalis L. sesquiterpenoids Ricigliano et al., 2016 
Vitis rotundifolia Michx. stilbenoids Ñopo-Olazabal et al., 2013 

Vitis vinifera L. resveratrol, stilbene Hosseini et al., 2017; Tisserant et 
al., 2016 

Withania coagulans 
(Stocks) Dunal 

withanolide Mirjalili et al., 2009; Murthy et al., 
2008 
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2. MATERIALS AND METHODS  
 

Plants in vitro cultivation  
To introduce plants in vitro, the seeds were sterilized in a 25% solution of the 

commercial preparation “Bilyzna” (Ukraine) for 10 minutes, washed three times for 5 
minutes with sterile distilled water, and cultivated on the surface of a 1/2MS solidified 
medium (Murashige and Skoog medium, Duchefa, with half strength of macroelements) at 
a temperature of 24°C and 16-hour illumination.  

Plant genetic transformation 
Leaves of 10-14-day-old seedlings or in vitro cultivated plants were used as 

explants. A. rhizogenes strains were grown at the standard conditions on an LB liquid 
culture medium containing 10 g/l casein hydrolyzed, 5 g/l yeast extract, 10 g/l NaCl, pH 7.0 
overnight at 28°C in the dark on a shaker (220 rpm). For transformation, explants were 
cocultivated with bacterial suspension for 30 min (density 2.00-2.50 at 600 nm) and then 
were transferred to the selective media to induce hairyroot formation. MS medium with 
half strength of macroelements and 600mg/l cefotaxime was used for hairyroots formation 
in the case of A. rhizogenes – mediated transformation. 

Hairy roots subcultivation 
The roots from the collection were subcultivated on 1/2 MS solidified medium (half 

strength Murashige and Skoog medium) at 24°C and 16-hour illumination.  
Plant material for chemical study 
Hairy root lines from the collection of the Institute of Cell Biology and Genetic 

Engineering of the National Academy of Sciences of Ukraine were used as the plant 
material for the study. The roots were grown at +24 °C for 2-4 weeks on the solidified 
nutrient 1/2 MS medium with the addition of sucrose at a concentration of 20 g/l. 

PCR analysis 
Genome DNA was extracted from the green leaves of sterile plants or hairy roots 

according to the CTAB method. PCR analysis of genome DNA was performed on 
Mastercycler personal 5332 amplifier (Eppendorf) using primers for target and selective 
genes. The amplification conditions were as follows: primary denaturation at 90°C, 3 min; 
30 cycles of amplification (94°C, 30 sec; 56-67°C, 30-40 sec; 72°C, 30 sec); final 
polymerization at 72°C, 5 min.  

Weight gain 
The weight gain was determined after 2-4 weeks of cultivation at a temperature of 

+24°C on Murashige and Skoog medium with a sucrose concentration of 20 g/l. The roots 
were separated from the medium, washed with deionized water, dried with filter paper, 
and weighed on Sartorius scales with a standard deviation of ± 0.005 g. 

Total flavonoids content assay 
Determination of the content of flavonoids was carried out according to the method 

with AlCl3. To prepare the extracts, the roots were separated from the medium, washed 
with deionized water, dried using filter paper, weighed, and homogenized in 70% ethanol. 
The homogenate was centrifuged in an Eppendorf Centrifuge 5415 C at 15 000 g for 10 
min. The reaction mixture contained 0.25 ml of extract supernatant, 1 ml of deionized 
water, 0.075 ml of 5% NaNO2 solution. After standing for 5 minutes, 0.075 ml of 10% AlCl3 
solution was added and held for another 5 minutes. 0.5 ml of 1M NaOH and 0.6 ml of 
deionized water were added. Absorption was determined at λ = 510 nm on a Fluorate-02-
Panorama spectrofluorimeter. The calculation of the total content of flavonoids was carried 
out in the rutin equivalent (RE).  

Antioxidant activity assay 
The antioxidant activity of ethanol extracts of hairy roots was studied using the 

DPPH test. The optical density of the solutions was measured at a wavelength of λ = 515 
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nm on a spectrofluorimeter. The radical scavenging activity (RSA, %) was calculated 
according to the following formula: 

RSA = 100 (OD0 – OD1) / OD0, 
where OD0 – optical density of the DPPH solution, OD1 – optical density of the of the 
reaction mixture after carrying out the reaction with DPPH. The effective concentration 
(EC50) was calculated as the fresh weight of the root (mg FW) required to scavenge 50% of 
DPPH in the reaction with the radical (RSA = 50%). 

Reducing power assay 
Reducing power was studied according to the ability of root extracts to reduce iron 

ions Fe3+ to Fe2+. The reaction mixture contained: 0.312 ml of 0.2 M phosphate buffer (pH 
6.6); 0.312 ml of 1% potassium hexacyanoferrate(III); and ethanol root extract, the 
concentration of which was successively reduced. The cuvettes were incubated in a water 
bath at 50 °C for 30 min. After that, 0.312 ml of 10% trichloroacetic acid, 1.25 ml of 
deionized water, and 0.25 ml of 0.1% iron(III) chloride were added to the reaction mixture. 
The optical density was measured at a wavelength of λ = 700 nm on a spectrofluorimeter. 
Reducing power was characterized by the effective concentration parameter (EC0.5 
corresponding to root weight (mg FW) required to obtain OD = 0.5. 

SOD activity determination 
The activity of the superoxide dismutase was studied using nitro blue tetrazolium 

chloride. Root material (100 mg) was placed in an cuvettes and triturated with 1 ml 50-mM 
Tris-HCl buffer (pH=8.0), then centrifuged at 13000 g (4°C) for 15 minutes. The reaction 
was carried out in Eppendorf tubes (1.5 ml) with 10 μl of supernatant, 540 μl of 50-μM 
Tris-HCl buffer, 130 μl of 65 mM methionine, 47 μl of 630 μM of nitro blue tetrazolium 
chloride, 12.5 μl of 1 mM of riboflavin. One tube for each specimen was left in the dark 
another was held under the influence of a white lamp light (fluorescent lamp T5 / G5 
model ELI - 230A - T5-8W) for 5 minutes in a thermostat at 26° C. Adsorption of the 
combined reaction mixture against the unleaded reaction mixture was measured at 550 nm 
using BioPhotometer (Eppendorf) v.1.35. The zero-sample contained all of these 
components except plant extract.  

UPLC-ESI-UHR-Qq-TOF-MS analysis 
For the analysis of multiple compositions in the ethanol extract of roots, the UPLC 

system (Dionex Ultimate 3000) was coupled with an Ultra-High Resolution Qq-Time-of-
Flight (UHR-QqTOF) mass spectrometry equipped with an electrospray ionization (ESI) 
interface (Bruker Impact II). The mass spectrometer was operated in the negative ESI 
mode with a Duo-Spray source, and the mass scan range was set at m/z 50–2500 for the 
TOF-MS scan using a resolution of 2700. The following parameter conditions were used: 
ion spray voltage, 3500 V; ion source heater; curtain gas, 25 psi; collision energy, 10 eV; 
declustering potential 100. The analyst TF software (version 1.7) combined with the 
information dependent acquisition package was used to acquire the MS data. The mobile 
phase was composed of 0.1% formic acid in water (elution A) and methanol (elution B) 
using a gradient elution of 30% elution B (0–5 minutes), from 30% to 50% of elution B (5 
and 20 minutes), from 50% to 90% elution B (20–40 minutes), and from 90% to 100% of 
elution B (40–45 minutes). 

Artemisinin content study 
Artemisinin and its co-products (ART) content were studied by HPLC–MS system. 

Chromatographic analysis was performed using High–efficiency liquid chromatograph 
Agilent 1200, Agilent Technologies, USA. The separation was carried out by isocratic 
method using ZORBAX SB–C18 2.1 mm × 150 mm, 3.5 μm (Agilent Technologies, USA) 
column with a 30°С. Water with methanol and acetonitrile (30/20/50 v/v) was used as a 
mobile phase with 0.4 ml min–1 flow–rate. The samples were analyzed separately 
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according to their retention times. Their spectrum was compared with the spectrum of the 
artemisinin standard (Sigma–Aldrich, catalog number 63968–64–9). 

Preparation of nanoparticle colloid solutions 
The hairyroot ethanol extracts were used to obtain colloid solutions of silver 

nanoparticles (AgNPs). Namely, 0.3 ml of the extracts and 3 ml of 1 mM AgNO3 were mixed 
thoroughly. After that, all the solutions were incubated for one hour in a water bath at 
+80°C to reduce Ag+ to Ag0.    

Characterization of AgNPs 
Transmission electron microscopy (TEM) was used to examine the size and 

morphology of the synthesized NPs. The image was done on a TEM1230 JEOL (Tokyo, 
Japan) with an acceleration voltage of 80 kV. The samples for TEM investigations were 
prepared by drying 0.03…0.05 ml of colloidal solution dropwise on Cu-grids with a 
previously carbon-coated film at room temperature. 

AgNPs spectrophotometry assay.  
The absorbance of the samples (colloid solutions of AgNPs) was measured 

automatically in the wavelength range of 300…600 nm (Fluorat-02-Panorama 
spectrofluorimeter) right after the incubation in a water bath, then in five and nine days to 
observe the dynamics of spectra changing. UV-vis spectra of the samples were obtained 
using the PanoramaPro software. 
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3. THE RESULTS OF PLANT GENETIC TRANSFORMATION

3.1. Bioactivity of the hairy roots from the collection  
of the Institute of Cell Biology and Genetic Engineering NAS of Ukraine 

The collection of hairy roots of medicinal plants presented in the Institute of Cell 
Biology and Genetic Engineering of the National Academy of Sciences of Ukraine includes 
almost one hundred specimens of sixteen species (Fig. 12). Some of these hairy roots are 
subcultured for nearly 20 years under sterile conditions in a thermostatically controlled 
room with a temperature of 24˚C. The presence of roots obtained due to wild strains of 
agrobacteria and other roots obtained after the transformation using bacteria that had 
additional plasmids with different target genes is a specific feature of the collection. 

Such diversity makes it possible to study the physiological and biochemical 
characteristics of the collection specimens. Collection samples can also be used to study the 
pleiotropic effects of genetic transformation and the influence of various transferred genes 
on plant cells and organs. These studies have both a purely fundamental orientation and 
practical interest, as they allow us to select among a large of potentially valuable samples 
from a technological point of view, which can find a practical application for the production 
of compounds valuable for medicine. The collection specimens were used in the work 
financed by Ukrainian and international grants. 

The collection of hairy roots was used to study the effect of genetic transformation 
on different aspects of the functioning of plant cells. To conduct this study, we evaluated 
the changes in hairy roots compared to the control (mother) plants cultivated in the same 
in vitro conditions. Such parameters were compared: total content of flavonoids; 
antioxidant activity; reducing activity; antimicrobial activity; activity of plant ferments 
(catalase and superoxide dismutase). The results of the study indicated the differences 
between the studied hairy root lines obtained using the same plants and the same bacteria. 
This effect was probably due to the introduction of bacterial genes (rol) in different sites in 
hairyroot clones, which were the independent transformation events. In many cases, the 
stimulating effect of the genetic transformation was observed. 

Figure 12 – The samples from the collection of hairy roots of medicinal plants 
(Laboratory of Adaptational Biotechnology, Institute of Cell Biology and Genetic 
Engineering NAS of Ukraine, Kyiv, Ukraine) 
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3.2. Fructans content  
 

The genetic transformation using Agrobacterium rhizogenes affected fructans 
synthesis in hairy roots. hairyroots of different plant species accumulated fructans at 21-
190 mg/g dry weight (Fig. 13). Comparative assessment of fructan content in the 
transgenic roots and control plants of Artemisia spp – A. annua, A. tilesii, A. dracunculus, A. 
ludoviciana, and A. absinthium was carried out (Duplij et al., 2017). The highest fructan 
content was found in the control leaves and roots of А. annua (39.4 and 32.5 mg/g fresh 
weight, respectively), the lowest – in the hairy roots of A. dracunculus, obtained by 
Agrobacterium rhisogenes-mediated transformation using A4 wild strain (6.4 mg/g) and in 
the leaves of the control A. ludoviciana plants (6.5 mg/g). The widest variation of fructan 
content was measured in samples of А. annua, the lowest – in A. dracunculus (Fig. 14). 

The effect of some growth regulators Ivin (N-oxide 2,6-dimethyl pyridine), Emistim, 
Biolan, and Charkor (“AgroBioTech”, Ukraine) on Cichorium intybus L. hairy roots growth 
and fructans accumulation was studied (Tsyganкova et al., 2013).  

Addition of regulators to the MS medium at a concentration of 2.5-10.0 μl/l 
stimulated root growth. Fructans content in hairy roots increased 7.0-35 fold and 
depended on the type of regulator and hairyroot line used in the experiment. 

 

 
 

            
Figure 13 – Variations of fructan content (mg/g dry weight) in different plants: 1 – 

control; 2-9 – hairy root lines 
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Figure 14 – Comparative assessment of fructans content in transgenic roots and 

control plants of Artemisia annua, A. tilesii, A. dracunculus, A. ludoviciana, and A. absinthium 
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It is known that the addition of growth regulators to the medium in the case of in 
vitro cultivation of the samples can affect the growth of plants. Such addition can also affect 
the synthesis of various compounds in hairy roots, including fructans.  

In our laboratory effect of some growth regulators Ivin, Emistim, Biolan, and 
Charkov (“AgroBioTech”, Ukraine) on Cichorium intybus L. hairy root growth and fructans 
accumulation was studied (Tsyganкova et al., 2013) (Fig. 15). These regulators have a 
multi-component composition, which includes the products of a symbiotic myxomycete 
fungus isolated from ginseng roots (a mixture of amino acids, carbohydrates, fatty acids, 
polysaccharides, phytohormones, and microelements), which affect plant growth 
processes.  

Every mentioned above regulator, added to the MS medium at a concentration of 
2.5-10.0 μl/l stimulated root growth. Fructans content in hairy roots increased 7.0-35 fold 
and depended on the type of regulator and hairyroot line used in the experiment. 

 

 
 

 
 

Figure 15 – Growth of chicory hairy root line on the medium supplemented with 
growth regulators (“AgroBioTech”, Ukraine): Ivin (b, 2.5 µL/L; c, 5 µL/L) and Emistim (d, 
2.5 µL/L; e, 5 µL/L; f, 10 µL/L), without regulators (a); g – total fructans content (1, 7, 13, 
19 – without regulators)   

Fructans 
content/30 days g 
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3.3. Flavonoid content  
 
Flavonoids are a large group of polyphenolic compounds with a benzo-γ-pyrone 

structure synthesized by the phenylpropanoid pathway. These secondary metabolites can 
be found in different parts of plants. Flavonoids are associated with various biological 
effects (Dias et al., 2021) (Fig. 16). They are important compounds of plant cells that take 
part in the adaptation to stress factors (Agati et al., 2012). As a dietary component, 
flavonoids have health-promoting properties. Flavonoids are used in the food, cosmetic, 
and pharmaceutical industries (Kumar, Pandey, 2013b; Cortez et al., 2017; Khoo et al., 
2017; Agrawal, 2011). Due to their bioactivity as potent antioxidants, flavonoids can be 
used for drug production (Cook, Samman, 1998; Miyake et al., 2000). It was reported the 
anti-inflammatory activity of flavonoids (Middleton, 1998; Murlidhar et al., 2010). They 
demonstrated antimicrobial (Górniak et al., 2019; Fathima et al., 2016; Xu et al., 2012) and 
antifungal activity (Redondo-Blanco et al., 2020; Al Aboody, Mickymaray, 2020). 

Isoflavones, a group of flavonoids, are phytochemicals with potent estrogenic 
activity (Atkinson et al., 2004). In particular, such compounds as genistein, daidzein, and 
glycitein are accumulated in soybeans (Doerge, Sheehan, 2002). Their structure is similar 
to the human female hormone 17-β-estradiol, so they can be used for the treatment of 
some hormone-dependent diseases and in relieving postmenopausal symptoms. The 
clinical studies proved the possibility of genistein and daidzein use in the chemoprevention 
of breast and prostate cancer, cardiovascular disease, and osteoporosis (deVere White et 
al., 2010; Chen et al., 2005; Cassidy et al., 1996; Rodríguez-García et al., 2019). The same 
effect was found in the case of other flavonoids using (Ciumărnean et al., 2020; Ginwala et 
al., 2019; Zaidun et al., 2018; Tavsan et al., 2019; Zhang et al., 2017).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 – Spectrum of bioactivity of plant-synthesized flavonoids 
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We studied the content of flavonoids in different clones of hairy roots. This study 
reveals the significant difference between root clones and the increase of flavonoid content 
in some clones (Bohdanovych et al., 2021; Bohdanovych et al., 2021; Olkhovska and 
Matvieieva, 2021; Matvieieva et al., 2020; Kobylinska et al., 2020). For example, the high 
content of flavonoids was identified in Artemisia vulgaris hairy root clones. In particular, a 
2.1 – 4.4 fold increase in flavonoid concentration was found. The same increase was 
studied in A. dracunculus (1.6 – 2.5 fold), A. annua (2.1-3.3 fold), and A. tilesii (1.1- 2.4 fold) 
hairyroot clones.  

Four hairy root lines (No 2, 4, 10, and 16) of A. tilesii that differed in their 
morphology were used to compare flavonoid content (Fig. 17). They differed significantly 
in the growth rate and the content of flavonoids. The content of flavonoids in all these lines 
was higher than that in control roots (2.31 ± 0.42 mg RE/ g FW) and varied from 2.57 ± 
0.28 mg RE/ g FW in line 4 to 9.47 ± 1.97 mg RE/ g FW in line 2. Such an increase in the 
content of flavonoids in extracts from hairyroots compared to non-transformed plants can 
be explained by an increase in the level of synthesis of secondary metabolites after the 
transfer of rol genes, because they are known as activators of metabolism in plants. 
Significant variability in the parameters between individual lines is probably caused by the 
non-determined incorporation of transferred genes into the plant genome. It is also 
important to note that no differences in flavonoid accumulation were observed between 
the two groups of lines. Hairy roots obtained as a result of transformation with a wild 
strain of agrobacteria (lines 10 and 16) and those containing ifn-α2b and nptII genes (lines 
2 and 4) had approximately the same range of flavonoid concentration. Therefore, it can be 
concluded that these additional genes do not affect the biosynthesis of polyphenolic 
compounds (Bohdanovych et al., 2021). 

 

 
 
 

Figure 17 – Artemisia tilesii hairyroot lines and the differences in their growth and 
flavonoids accumulation: a – No 2; b – No 4; c – No 10; d – No 16 (Bohdanovych et al., 2022) 
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3.4. Artemisinin and sugars production  
 

We studied the effect of genetic transformation on the biologically active compound 
artemisinin and its co-products and sugars accumulation in Artemisia vulgaris and 
Artemisia dracunculus hairy root cultures.  

The detection of artemisinin in hairy wormwood roots is noteworthy, as Artemisia 
annua plants are widely known as producers of this valuable metabolite. Artemisinin and 
its derivatives are sesquiterpene lactones with antimalarial activity (Xia et al., 2020). These 
plant-derived components are recommended as a drug for malaria-specific treatment. The 
secondary metabolites possess anti-inflammatory, antioxidant, and immunoregulatory 
properties (White et al., 2915; Wan et al., 2017; Shi et al., 2015; Roussel et al., 2017; 
Otuechere et al., 2012). The antiviral activity of artesunate was also detected (Sharma et al., 
2014). Luo Y. et al. (2019) proposed artemisinin-based nanocomposition for specific cancer 
treatment.  

In our study (Drobot et al., 2017), it was found that genetic transformation resulted 
in changes in artemisinin content in A. vulgaris hairy roots. Notably, the content was 0.237–
1.02 mg/g dry weight in transformed roots (Drobot et al., 2016a). Therefore, the increase 
of artemisinin content up to 1.02 mg/g DW compared to the nontransformed roots (up to 
0.687 mg/g DW) was observed (Fig. 18). In the case of both species, changes in artemisinin 
content in transgenic root lines did not depend on the vector used. Thus, Agrobacterium 
rhizogenes-mediated genetic transformation can be used for obtaining A. vulgaris and A. 
dracunculus hairy root culture produced artemisinin and sugars in a higher amount than 
mother plants (Fig. 18). 

Glucose, fructose, sucrose, and mannitol were accumulated in A. vulgaris and A. 
dracunculus hairy root lines. In some cases, a genetic transformation has led to the sugar 
content increasing or appearing of nonrelevant for the control plant carbohydrates.  

Control A. vulgaris and A. dracunculus plants cultivated in vitro differed in 
carbohydrate content. The content reached 61.7±0.21 and 14.235±0.24 mg/g DW, 
respectively. The high glucose content was also found in A. dracunculus leaves – 31.29±0.45 
mg/g DW compared with 13.35±0.12 mg/g DW in the roots.  

Fructose, glucose, and sucrose content was higher in the roots of A. vulgaris than in 
the leaves and reached 20.93±0.31, 17.37±0.26, and 25.48±1.14mg/g DW, respectively 
(14.71±0.28 mg/g, 10.15±0.1 mg/g and 12.27±1.39 mg/g DW in the leaves). 

The transgenic roots not only differed in fructose, glucose, and sucrose content 
compared to the control but also accumulated nontypical for mother plant compounds. 
Sucrose content was 1.6 times higher in A. vulgaris hairy root lines than in the control 
roots. Fructose content was found to be 3.4 times higher in A. dracunculus hairy root 
cultures than in the control roots. The accumulation of galactose was a specific feature of 
the transgenic roots since this compound was not detected in the control nontransformed 
plants (Fig. 19).  

Thus, the transformation affected the synthesis of metabolites of different groups - 
both artemisinin and sugars – in the transformed plant roots of the two plant species. 
Probably, this is the result of the transfer to the genome of plants of bacterial rol genes, 
known for their influence on the metabolism of plant cells. The detection of mannitol and 
galactose, which were absent in the leaves of the control plants is of special interest. This 
result suggests that the plants probably have genes encoding the synthesis of these 
compounds, but the genes are usually inactive in the leaves. At the same time, the genetic 
transformation and incorporation of bacterial genes into the plant genome led to their 
activation resulting in the appearance of mannitol and galactose in hairy roots. 
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Figure 18 – HPLC traces of artemisinin content obtained for roots of 

control Artemisia vulgaris plants (a); A. vulgaris hairy roots (b); A. dracunculus control roots 
(c); A. dracunculus hairy roots (d) (Drobot et al., 2017) 
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Figure 19 – Sugars content (Glu – glucose, Gal – galactose, Mann – mannitol, Sucr – 

sucrose and Fru – fructose) in Artemisia vulgaris non-transformed plants (1 – leaves, 2 – 
roots) and hairy root transgenic lines (5–9). 
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3.5. Variations of antioxidant activity  
 

The system of antioxidant protection of plants is very complex. In a simplified way, 
it can be represented as the activity of antioxidant defense enzymes (primarily superoxide 
dismutase, catalase, peroxidase), as well as the activity of some plant metabolites, in 
particular, polyphenols, the synthesis of which can be inhibited or increased under certain 
conditions (for example, under the influence of stress factors of various origins). 
Transgenic roots differ from mother (nontransformed) plants by the presence of different 
transferred genes. Can these foreign genes affect the activity of the antioxidant defense 
system in hairy roots? We studied this problem using transgenic roots of different plant 
species.  

The effect of A. rhizogenes-mediated transformation on the antioxidant status of 
Artemisia tilesii, A. vulgaris, A. dracunculus, and A. annua transgenic roots has been studied 
(Matvieieva et al., 2018a). Antioxidant activity (AOA) of aqueous extracts was determined 
using methods based on the ability to reduce DPPH and ABTS radicals. The level of AOA 
(DPPH) in 50% of extracts obtained from transgenic roots was higher than the level of 
activity possessed by extracts from untransformed roots. An increased ability to reduce the 
ABTS+ radical was observed in 80% of the extracts. Extracts of A. annua and A. tilesii 
transgenic roots were the most active, while the lowest antioxidant activity was shown in 
A. dracunculus extracts. Thus, A. rhizogenes-mediated transformation has changed the 
antioxidant status of the hairy roots of several Artemisia spp. plants (except A. vulgaris).  

In another study (Bohdanovych et al., 2022) the correlation between antioxidant 
activity (DPPH test) and total flavonoid content was evaluated. The total content of 
flavonoids and the levels of antioxidant activity in Artemisia tilesii hairy root lines with 
different transferred genes were compared. The content of flavonoids in most of the lines 
was higher than in the control plants and correlated with antioxidant activity (Fig. 20, 21, 
24). The higher content of flavonoids corresponds with the higher antioxidant activity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 – Strong correlation between flavonoid content and reducing power (a) or 
flavonoid content and antioxidant activity (b) in the samples of Artemisia tilesii hairyroots 
(Matvieieva et al., 2020) 

a 

b 
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Figure 21 – Genetic transformation affected the activity of the antioxidant defense 

system in hairy roots 
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The activity of one of the key enzymes of the antioxidant defense system – 
superoxide dismutase (SOD) – was determined in Artemisia spp. and Althaea officinalis 
hairy root lines (Matvieieva et al., 2022a) (Fig. 22) obtained after the transformation by 
wild A4 Agrobacterium rhizogenes strain.  

SOD activity in the roots of untransformed in vitro cultivated plants used for the 
initiation of hairy roots growth was in the range from 45.8 ± 8.7 U/μg (A. officinalis) to 275 
± 97.1 U/μg (A. ludoviciana). More than half of tested hairy root lines (54%) showed a 
significant increase in SOD activity compared to untransformed roots. The highest SOD 
activity values of hairy root extracts (24-fold increase) were founded for A. officinalis (1105 
± 174 U/μg) and A. dracunculus (1356 ± 402 U/μg). The increased SOD was also found in 
the hairy roots of A. vulgaris (up to 375 ± 28.2 U/μg, sevenfold increase), A. ludoviciana 
(1001 ± 191 U/μg, 3.6-fold increase), and A. tilesii (438 ± 104 U/μg, 1.6-fold increase). The 
results of our study indicated that transformation by wild-type A. rhizogenes not harboring 
any foreign genes implemented in SOD activity regulation can stably activate the plant 
antioxidant enzyme system (Fig. 23). 

 
 

 
Figure 22 – Superoxide dismutase activity in hairy root clones of different plant 

species (Matvieieva et al., 2022a) 
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Figure 23 – Differences in superoxide dismutase activity in hairyroot clones (a – Artemisia 
vulgaris, b – Althaea officinalis) can be initiated by the genetic transformation 
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Figure 24 – Correlation between flavonoid content in the extracts of hairy roots and their 
reducing (Kobylinska et al., 2021) or antioxidant activity (Matvieieva et al., 2020). 
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3.6. Effect of stress factors on growth and biosynthetic activity of hairy roots 
 

The short-term high-temperature treatment affected the flavonoid accumulation in 
Artemisia vulgaris L. and A. dracunculus L hairy roots (Matvieieva et al., 2018b). The roots 
were cultivated for one, two, and five days at +36 °C, then were grown at +24°C for up to 
four weeks. Hairy root lines differed in their sensitivity to short-term high-temperature 
exposure. Both stimulation and inhibition of flavonoid accumulation, as well as no changes, 
were observed. A significant (1.7–6.4 times) decrease in the flavonoid content was 
observed in lines that showed higher flavonoid content under standard conditions (+24° C) 
without the temperature stress exposure.  

In addition, we compared a postponed response of hairy roots (Althaea officinalis L.) 
of short-term cold- (+10°, 7 days) and high-temperature (+36°, 7 days) stresses factors 
(Matvieieva et al., 2021a). The results have shown a wide range of sensitivities to short-
term temperature stress. This effect depended on the root line but was independent of the 
transformation vectors used for the transformation and the presence of the human ifn-α2b 
gene. It may be explained by the random insertion of transferred DNA in individual 
transformational events.  

High temperature caused significant growth inhibition of all root lines, except those, 
which had the highest flavonoid content under the control conditions (Fig. 25, 26). Short-
term cultivation of hairy roots at a low temperature did not cause high growth suppression, 
especially in the case of root line No2. This sample was resistant to the short-term effect of 
low temperature. In parallel with growth inhibition caused by a temperature increase, the 
activation of flavonoid synthesis as a response to this stress factor was observed. The study 
has shown a strong (R2 = 0.78) linear dependence between the antioxidant activity of 
extracts from hairy roots and their flavonoid content. Thus, flavonoids participate in the 
response and adaptation of hairy roots to high-temperature stress (Matvieieva et al., 
2021a). 

 

 
 

Figure 25 – Growth of hairy roots of Althaea officinalis, lines no 2 (a, b, c) and no 3 
(d, e, f): a, d – growth under control conditions; b, e – root growth after short-term 
cultivation at +10°С; c, f – root growth after short-term cultivation at +36°С (Matvieieva et 
al., 2021a) 

f 

b а c 
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Figure 26 – Stress factors of different origins can affect growth rate and the 
biosynthetic activity of hairy roots 
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3.7. Effect of nitrogen content on the biosynthetic activity of hairy roots 
 

The content of nitrogen compounds in the soil or nutrient medium can alter the 
growth of plants, root cultures, and cells, both in vivo and in vitro. However, genetic 
transformation using soil phytopathogenic bacteria Agrobacterium rhizogenes can lead to 
changes in the functioning of plant cells, their ability to adapt to growing conditions, and 
biosynthetic activity. We studied the effects of reducing the content of nitrate salts in the 
nutrient medium on the growth of hairy roots of Cichorium intybus L. as a model 
(Matvieieva et al., 2021b).  

Two root lines earlier obtained using the genetic transformation of chicory plants by 
A. rhizogenes A4 were studied. The roots were cultured on solidified Murashige and Skoog 
nutrient medium with standard (MS) and reduced nitrate salts content.  

Differences in the growth rate of the roots of the two lines were revealed (Fig. 27). 
One line (5/1) was sensitive to such change of the medium that was expressed in a 
decrease in weight gain. However, the growth of the hairy roots of the second line (5/2) on 
the modified medium did not differ significantly from the control.  

It should be noted that a decrease in the total content of flavonoids, as well as in 
antioxidant and reducing activities was observed in both samples. Such differences 
probably are related to the peculiarities of the genetic transformation of plant DNA using 
agrobacteria, in which the site of incorporation of transferred genes is indeterminate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27 – Differences in the effect of Nitrogen content (in nitrate form) on the 

growth rate of two hairy root lines of chicory (Matvieieva et al., 2021b): 1 and a, c – control 
MS medium was used; 2 and b, d – the medium with a twice reduced nitrates content was 
used 

a 

c d 

b 

a 

b 
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3.8. Effect of toxic metal on the growth and biosynthetic activity of hairy roots 
 
The roots were able to interact with vanadium(IV) compounds. The compound 

turned out to be toxic, which was manifested in a decrease in the weight of the roots on the 
medium with vanadium (Fig. 28). Since vanadates are stereochemical analogs of 
phosphate, it can be assumed that the compounds entered the cells using the phosphate 
transport system.  

The effect of toxic vanadium(IV) was studied by cultivating Artemisia tilesii hairy roots 
in the medium in concentrations from 1 to 100 mg/l. Hairy roots were more resistant to toxic 
metal than the mother plants. The addition of 5 mg/l of V(IV) to the MS medium led to 
complete inhibition of plant growth. At the same time, hairy roots survived on a medium 
containing 100 mg/l of V(IV). An increase in the concentration of vanadium(IV) in the 
medium from 1 to 100 mg/l has led to a significant increase in the content of flavonoids (by 
35%) in the hairy roots. The antioxidant activity of the extract from the roots also 
increased under the influence of vanadium(IV) in concentrations of 1 and 5 mg/l by 11% 
and 20%. 

Absorption of V(IV) by transgenic roots and its accumulation occurred both at its 
minimum (1 mg/l) and maximum (100 mg/l) concentrations in the culture medium. Quite 
expectedly, the maximum amount of V(IV), 80 μg/g of root weight, was accumulated by the 
roots growing at 100 mg/l of V(IV), and the minimum amount when growing at 1 mg/l (11 
μg/g  of root weight). However, with an increase in the concentration of toxic vanadium 
(IV), the efficiency of its absorption from the nutrient medium decreased significantly. The 
highest efficiency of V(IV) removal by hairy roots was observed at a concentration of 1 
mg/l in the medium and reached 60%. The lowest immobilization efficiency (3%) was 
observed at a concentration of 100 mg/l. 

 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 28 – Effect of adding toxic metal to the medium on growth rate and flavonoid 
content of  Artemisia tilesii hairy roots 

 

Growth rate decreased 
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3.9. Effect of sucrose content on growth of hairy roots 
 

Carbohydrates are the compounds that participate in plant growth and the synthesis 
of metabolites. This is because these chemicals are the source of Carbon and energy for the 
plants. When plants grow in vitro, optimal concentrations of sugars that promote growth 
and biosynthesis must be determined for each plant species.  

The influence of the concentration of sugars in the nutrient medium on the growth 
of roots was determined (Bohdanovych et al., 2021). For this, three variants of the 1/2MS 
medium were used: with the addition of 30 g/l of sucrose, with the content of sucrose 
reduced to 20 g/l, and with the addition of 20 g/l of sucrose and 10 g/l of fructose as 
carbon sources.  

It was stated that the most increase in root weight was at a medium with sucrose at 
a concentration of 30 g/l (Fig. 29, 31). Reducing the sucrose content to 20 g/l led to a 
decrease in root weight by 17.4% and, in the case of sample cultivation on the same 
medium supplemented with fructose, root weight decreased by 15.4%.  

Although the root growth rate was lower when the sucrose content in the medium 
was increased up to 40 g/l, and the specific content of flavonoids was higher under such 
conditions. 

 
   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 29 – Growth of hairy roots and flavonoid accumulation in the medium with 

different sucrose content 
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3.10. Effect of compounds synthesized by bacteria on hairy roots growth 

The interaction between soil microorganisms and plants has attracted the attention 
of researchers for many years. Since microorganisms in close contact with the rhizosphere 
can affect the vital activity of plants, the yield of crops may reduce or increase. At the same 
time, the factor of the direct effect of compounds excreted by soil bacteria, which are 
known for their positive influence on plants, particularly on their growth and biosynthetic 
activity, remains understudied. We proposed the model where the sterile culture liquid 
(test solution) obtained after the one-day cultivation of the Priestia endophytica UKM B-
7515 bacteria interacted with the hairy roots of the wormwood (Artemisia tilesii) 
(Matvieieva et al., 2022b).  

The roots of the two lines differed in sensitivity to the test solution by the growth 
rate. An increase in the concentration of the test solution in the nutrient medium 
stimulated the growth of root line No10. Adding 0.025, 0.05, and 0.1% of the test solution 
increased the root weight by 1.69, 2.31, and 2.54 times respectively. At the same time, no 
differences were found in the growth of the root weight of line No4 (Fig. 30, 31).  

Therefore, a free of bacterial cells culture medium obtained after one-day cultivation 
of Priestia endophytica UKM B-7515 bacteria can stimulate the growth of some hairy root 
cultures and not affect others. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 30 – Cultivation of roots of Artemisia tilesii root lines No. 10 (a, b, c) and              

No. 4 (d, e, f) in 1/2MS nutrient medium with the addition of a test solution at a 
concentration of 0 (a, d), 0.025 (b, e), and 0.1% (c, f) (Matvieieva et al., 2022b). 
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Figure 31 – Different factors that can affect hairy root growth parameters and 
bioactivity 
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3.11. Antiviral activity of the extracts of hairy roots  
 

The determination of the presence or absence of antiviral activity of extracts from 
the hairy roots of plants of various species was the next part of the work of the Laboratory 
of adaptation biotechnology ICBGE NAS of Ukraine. In our work, we had the opportunity to 
use both agrobacteria carrying plasmids with a human interferon-α2b gene and a wild 
strain for plant genetic transformation. The human interferon-α2b gene can improve 
antiviral activity under the suitable expression conditions of the gene and the synthesis of 
the corresponding protein. Plants produced recombinant proteins can be used for the 
synthesis of valuable compounds for further extraction or without extraction as a so-called 
“edible” vaccine that provides direct human or animal immunization (Walmsley et al., 
2003; Joensuu et al., 2008; Gunasekaran & Gothandam, 2020).  

We transferred human interferon-α2b gene (ifn-α2b) in Cichorium intybus, Artemisia 
tilesii, Bidens pilosa, Althaea officinalis, and Lactuca sativa (Matvieieva et al., 2009; 
Matvieieva et al., 2012a). The antiviral activity of extracts from transgenic plants and roots 
was studied (Matvieieva et al., 2012b).  

The antiviral activity of extracts from different transgenic root lines of each species 
(B. pilosa, A. tilesii, A. officinalis, L. sativa, C. intybus) significantly differed. This difference 
may be explained by the fact that each transgenic line is an independent transformational 
event. The level of antiviral activity of the extracts varied in transgenic root lines of 
different plant species studied in our work. The high antiviral activity tested on the MDBK 
cell line was identified in extracts of L. sativa (up to 14062 IU/g) and A. officinalis (up to 
40760 IU/g). The highest antiviral activity was found in extracts of A. tilesii transgenic 
roots – up to 98437 IU/g (Fig. 32, 33). 

 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32 – Antiviral activity of the extracts of hairy roots of different plant species 
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Figure 33 – Potential use of recombinant proteins synthesized in hairy roots 
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3.12. The DNA-protective activity of hairy root extracts 
 

DNA damage is one of the significant negative effects of free radicals and oxidative 
stress. Reactive oxygen species damage DNA by strand breaks and base oxidation resulting 
in modifications of DNA structure. Such a modification, in turn, leads to changes in coding 
and, accordingly, to a violation of the essential functions of DNA in cells. Such a process can 
leads to apoptosis of the cells and the initiation of cancer. That is why the search for new 
compounds that can effectively protect DNA from ROS-induced damage continues.  

It was studied that some plant-synthesized chemicals can protect DNA from 
oxidative stress. Flavonoids were identified as effective DNA protectors. For example, Min 
et al. (2009) proved quercetin as an inhibitor of hydrogen peroxide-induced DNA damage. 
The flavonoids also enhance DNA repair. Polyphenols protect DNA from oxidative damage 
(Silva et al., 2008). Quercetin was studied for cancer prevention due to its antioxidant 
activity (Vargas et al., 2010). Rich in flavonoids Kiwifruit was recommended as a modulator 
of DNA damage and DNA repair (Collins, 2013).  

DNA-protective activity can be studied in vitro using the Fenton reaction. Imlay et al. 
in 1988 found that exposure of Escherichia coli to low concentrations of hydrogen peroxide 
resulted in DNA damage that causes mutagenesis and kills the bacteria. Hydroxyl radicals 
generated by the Fenton reaction (ferrous sulfate + hydrogen peroxide) cause oxidatively 
induced breaks in DNA strands to open circular or linear. Cuprum salts can also be used for 
this reaction. Hydroxyl radicals react with nitrogenous bases of DNA producing base 
radicals and sugar radicals. The base radicals, in turn, react with the sugar moiety causing 
breakage of the sugar-phosphate backbone of nucleic acid, resulting in strand break. In 
particular, the effect of verbascoside to protect plasmid pBR322 DNA against the Fenton 
reaction was studied (Zhao et al., 2005). The plasmid DNA was damaged by hydroxyl 
radical generated from the Fenton reaction with H2O2 and Fe(II) or Fe(III). Such DNA 
damage was characterized by the diminution of supercoiled DNA forms or by the increase 
of relaxed or linear DNA forms after oxidative stress. Kaempherol demonstrated a 
significant DNA-protective effect, including in a study of the Fenton reaction (Simunkova et 
al., 2021). Another well-known flavonoid luteolin was studied in the Cu-Fenton reaction 
(Jomova et al., 2022). A dose-dependent protective effect of luteolin against ROS-induced 
DNA damage was observed. This effect was more pronounced compared to quercetin and 
kaempferol. DNA protective effect of quercetin against ROS attack was described (Jomova 
et al., 2017). It suppressed the formation of ROS due to the decreased catalytic action of 
copper in the Fenton reaction. It inhibited the formation of ROS due to the reduced catalytic 
effect of copper in the Fenton reaction by chelating and scavenging ROS with free 
quercetin. 

In our study, we detected the ability of extracts from hairy roots rich in different 
flavonoids to protect the plasmid DNA against damage caused by hydroxyl (∙OH) radicals. 
The reaction mixture contained pUC19 plasmid DNA, Fenton’s reagent followed by the 
addition of different concentrations of the extract. The reaction mixtures were incubated 
for 30 min at 37°C. After 30 minutes of incubation, bromophenol blue dye was added. The 
reaction mixtures were loaded on 0.8% agarose gel and electrophoresis was carried out 
followed by ethidium bromide staining. The supercoiled, open-circular, and linear forms of 
pUC19 were visualized and quantified using the LAS-4000 MINI Gel Documentation system. 
The extracts of hairyroots were found to be able to prevent DNA damage (Fig. 34). In the 
control reaction (red), without extract addition, open circular or linear DNA forms were 
detected. At the same time, the addition of the extracts from the hairy roots (green) 
protected DNA, and this protection has led to the minimization of damaged DNA amount 
and preservation of the native supercoiled form of DNA. 
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 Figure 34 – Hairy root extracts protect DNA from oxidative stress 
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3.13. Using of hairy root extracts for nanoparticles initiation 
 

“Green” synthesis refers to the use of natural or plant-based materials in 
nanoparticle synthesis, and it has become an increasingly popular approach due to its 
environmental friendliness and low toxicity. NPs can be produced in various sizes and 
shapes, including spherical, rod-shaped, and triangular (Shankar et al., 2004).  

Silver nanoparticles (AgNPs) are one of the most widely studied types of 
nanoparticles, and they can be synthesized using a variety of plant extracts (Ahmad et al., 
2016; Mohanpuria et al., 2008;). One of the advantages of green synthesis is that it allows 
for a high degree of control over the size and shape of the resulting nanoparticles. AgNPs 
synthesized using plant extracts tend to be more stable than those synthesized using 
chemical methods. This is because the plant extracts contain diverse compounds, such as 
polyphenols and flavonoids that can act as stabilizing agents for the nanoparticles 
(Vanlalveni et al., 2021). Green-synthesized AgNPs are generally considered to be more 
biocompatible than those synthesized using chemical methods since they are produced 
using natural materials. This makes them potentially useful for a range of biomedical 
applications, such as drug delivery and imaging (Chopra et al., 2022). 

AgNPs synthesized using plant extracts have been shown to exhibit potent 
antimicrobial activity against a variety of bacteria, fungi, and viruses. This is thought to be 
due to the unique surface properties of the nanoparticles, which can disrupt microbial cell 
membranes and inhibit their growth (Mohanpuria et al., 2008; Chopra et al., 2022; 
Abdelghany et al., 2018; Vanlalveni et al., 2011). Overall, the use of plant extracts in the 
synthesis of silver nanoparticles offers several advantages over traditional chemical 
methods. However, it's worth noting that the properties of the resulting nanoparticles can 
vary depending on the type of plant extract used, as well as the specific conditions of the 
synthesis. 

Our study (Kobylinska et al., 2020) was focused on the synthesis of AgNPs using 
extracts from the hairy roots of Artemisia tilesii Ledeb. and Artemisia annua L. (Fig. 35). We 
evaluated the effect of operational parameters such as the type of solvent, the temperature 
of extraction, flavonoid concentration, and the reducing power of the extracts on the 
particle size and yield of the resultant nanoparticles. Total flavonoid contents in A. annua 
and A. tilesii hairy root extracts were up to 80.0 ± 0.9 and 108 ± 4.4 mg RE per g DW, 
respectively. UPLC-ESI-UHR-Qq-TOF-MS analysis allowed to identify of some flavonoids 
luteolin-7-β-D-glucopyranosid, isorhamnetin 3-O-glucoside, baicalein-7-O-glucuronide, 
apigenin-7-O-glucoside, quercetin, sitosterol, caffeoylquinic, galic, chlorogenic and caffeic 
acids in the extracts. Due to the presence of these compounds, the extracts demonstrated 
high reducing activities.  

Spherical, oval, and triangular nanoparticles with effective sizes of 5–100 nm were 
obtained after the addition of the extracts to the AgNO3 solution. The transmission electron 
microscopy (TEM) data revealed significant differences in the shapes of NPs, obtained from 
the extracts from different root clones. The clustered and irregular NPs were found in the 
case of using ethanol extracts, mostly aggregated and having a size of 10–50 nm. The size of 
AgNPs decreased to 10–30 nm when the aqueous extracts were obtained at 80 °C. 
Nanoparticles possessed antimicrobial activity, which in some cases was higher than the 
same activity of 1mM AgNO3 solution.  
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Figure 35 – Hairy root extracts can be used for “green” synthesis of silver 
nanoparticles 
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In this chapter, we have shown a wide range of possibilities for using hairy roots. 
Since genetic transformation can lead to significant changes in the metabolism of plant 
cells, such roots can synthesize compounds specific to these plants in significantly greater 
amounts than mother plants. 

At the same time, transgenic roots can synthesize compounds that are not 
characteristic of the original plants. It is also the result of genetic transformation, transfer, 
and incorporation of agrobacterial genes into the plant genome and their influence on the 
activity of the plant's genes. 

In particular, we showed the possibility of increasing the content of flavonoids, 
sugars, and artemisinin in transgenic roots. It has also been determined that extracts from 
hairy roots can have increased antioxidant and reducing activity, as well as the ability to 
protect DNA from the damaging effect of oxidative stress. 

This indicates great prospects for the possible use of hairy roots as valuable 
producers of biologically active compounds and a source of raw materials for the creation 
of new drugs with a wide spectrum of activities. 
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3.14. Cultivation of hairy roots in bioreactors 
 

Hairy roots are fascinating creatures, products of the mind and work of scientists. 
They differ from ordinary plant roots in that they can be grown for unlimited time in in 
vitro culture with periodic subcultivation and replacement of the nutrient medium. The 
composition of this medium is quite simple (salts of potassium, sodium, calcium, 
magnesium, and iron) with the addition of a carbon source (for example, sucrose). The 
cultivation of such biotechnological roots does not require the use of additional high-value 
components.  

These roots can synthesize the same compounds as the roots of plants that grow in 
the soil in the natural environment. In addition, the content of such compounds may exceed 
their content in the original mother plants. This is the result of transformation and may be 
due to the specific activity of bacterial rol genes transferred to the genome of plants. All 
these features make it possible to develop technologies for the long-term cultivation of 
hairyroots in special equipment – bioreactors. 

Growing roots in bioreactors allow to preserve of natural plant populations; avoids 
the negative impact of weather conditions on plant growth; the constant content of 
bioactive compounds; gets guaranteed pure plant material without contamination with 
pesticides, herbicides, etc., since the roots are grown on a nutrient medium of a 
standardized composition; free up additional areas that can be used for crops growing; 
increase the concentration of bioactive compounds synthesized by plants due to the use of 
highly productive root lines (Fig. 36). 

The main conditions necessary for the growth of roots in a bioreactor are the 
nutrient medium of the required composition and the oxygen (one or another method of 
aeration, for example, mixing or bubbling air). The nutrient medium can be in the 
bioreactor permanently, filling a part of its volume, or as a fog, which allows the roots to 
have contact with oxygen in the air. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 36 – Advantages of using bioreactors for the cultivation of hairy roots 
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Bioreactors were used for the cultivation of different hairy roots to produce 
recombinant bioactive compounds. Some publications are cited below: 

a) Cucumis melo L. hairy roots were obtained using binary plasmid p221 that 
included cauliflower mosaic virus 35S promoter, tobacco etch virus (TEV) 
leader sequence, and 35S terminator. The roots were cultivated in an 18-
Litter bioreactor for the production of human tissue-plasminogen activator 
(t-PA) protein with a maximum content of t-PA 0.46 μg/mg total soluble 
protein (Kim et al., 2012b);  

b) Solanum lycopersicum L. hairy roots synthesized recombinant protein 
containing a fusion of rabies glycoprotein (RGP) and ricin toxin B (RTB) 
chain (rgp–rtxB) in 5 L bioreactor with biomass yield of 197.4 g/L and RGP 
RTB 7.84 μg/g (Singh et al., 2015); 

c) Brassica oleracea var. Italica hairy roots carried pCAMBIA1105.1 binary 
vector accumulated isoform 1 of the human growth hormone (hGH1) in 
case of cultivation in 1.5-Litter mesh airlift bioreactor (López et al., 2014). 
The content of hGH1 7.8 ± 0.3 μg/g DW was for the bioreactor. 

Hairy roots of plants of various species were used for cultivation in bioreactors. 
References to some of them are provided below (Kintzios et al., 2004; Eungsuwan et al., 
2021; Jeong et al., 2003; Suresh et al., 2005; Mehrotra et al., 2007; Sivakumar et al., 2010; 
Mišić et al., 2013; Kuźma et al., 2009; Srivastava and Srivastava, 2012) (Table 4). 

 
Table 4 – Examples of study of hairy root growth in bioreactors 

 
Plant species Product/parameter References 

Arachis hypogaea trans-resveratrol, trans-
arachidin-1, trans-arachidin-3 

Eungsuwan et al., 2021 

Panax ginseng growth parameters Jeong et al., 2003 
Pueraria phaseoloides puerarin Kintzios et al., 2004 

Tagetes patula growth parameters Suresh et al., 2005 
Glycyrrhiza glabra growth parameters Mehrotra et al., 2007 
Artemisia annua growth parameters Sivakumar et al., 2010 

Arachis hypogaea growth parameters Sivakumar et al., 2010 
Centaurium maritimum secoiridoid glycosides Mišić et al., 2013 

Salvia sclarea diterpenoids Kuźma et al., 2009 
Azadirachta indica azadirachtin Srivastava and Srivastava, 2012 
Picrorhiza kurroa picroliv Verma et al., 2015 

Beta vulgaris betalaine Suresh et al., 2004 
Hyoscyamus niger salicylic acid Kareem et al., 2019 

 
Since the cultivation of hairy roots is of considerable commercial interest, reactors 

of various types have been developed for about forty years. They differ in technical 
complexity and design features. However, when designing bioreactors of all types, the need 
to supply and change the nutrient medium, aeration, and temperature control is taken into 
account. Such types of bioreactors can be named as Liquid-Phase, Gas Phase, Stirred Tank, 
Bubble Column, Radial Flow, Nutrient Mist, Trickle Bed, Convective Flow, Rotating Drum, 
Turbine Blade, and Airlift Bioreactors (Stiles and Liu, 2013; Baqueet al., 2012; Georgiev et 
al., 2013; Kowalczyk et al., 2022; Srivastava and Srivastava, 2007; Mishra and Ranjan, 
2008; Ramakrishnan et al., 2004; Martin and Vermette, 2005; Cuello and Yue, 2008). The 
construction schemes of some types of bioreactors are presented in the publications of Kim 
et al., 2002b; Kondo et al., 1989; Kim et al., 2003; Weathers et al., 1997; Srivastava and 
Srivastava, 2007 and others. 
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3.15. The collection of hairy roots: initiation and study 
 

The Institute of Cell Biology and Genetic Engineering of the National Academy of 
Sciences of Ukraine currently has an extensive collection of hairy roots of medicinal plants 
of various species, which includes about a hundred collection specimens. We used 
Agrobacterium rhizogenes – mediated transformation to obtain clones of hairy roots of 
different medicinal plants of Artemisia vulgaris, A. annua, A. dracunculus, A. absinthium, A. 
tilesii, Bidens pilosa, Cichorium intybus, Althaea officinalis, Tragopogon porrifolius and other 
plant species (Fig. 37). 

We studied the possibility of using the genetic transformation of different medicinal 
plants to obtain hairyroot cultures. These roots were studied as producers of the complex 
of bioactive compounds with a broad spectrum of bioactivity. The clones differed in some 
physiological parameters (growth rate) and the content of secondary metabolites. The 
clones from the collection can be used for the production of a complex of bioactive 
compounds (polyphenols, flavonoids, artemisinin) with a high level of antioxidant, anti-
inflammatory, and antiviral activity. 

 
Artemisia annua L. (sweet wormwood, annual wormwood) is the most studied 

and best-known plant of this genus. These plants are native to Asia but have become 
widespread in different parts of the world. A. annua became especially famous after the 
awarding of the 2015 Nobel Prize to the Chinese researcher Tu Youyou for her long-term 
study of annual wormwood as a producer of artemisinin, a compound with antimalarial 
properties. The plants synthesize coumarins, flavones, flavonols, phenolic acids, 
sesquiterpenes, monoterpenes, and other bioactive compounds (Septembre-Malaterre et 
al., 2020; Sanjay Kumar Rai et al., 2021). A. annua plants can be used not only for malaria 
treatment (Willcox, 2009; Hsu, 2006; Ho et al., 2014; Sankhuan et al., 2022). They possess 
hepatoprotective, anti-inflammatory, anti-cancer, antioxidant, anti-HIV and antimicrobial 
properties (Alesaeidi et al., 2016; Ćavar et al., 2012; Lubbe et al., 2012; Kim et al., 2014; 
Slezakova et al., 2017; El-Askary et al., 2019; Lang et al., 2019; Li et al., 2015; Ekiert et al., 
2021).  

Annual wormwood plants were used for the construction of transgenic plants and 
the initiation of hairy root growth. The ideas of these works were based on the necessity to 
develop the transformation protocol for obtaining plant or root clones with increased 
levels of bioactive compound accumulation. For this purpose, different strains of A. 
tumefaciens and A. rhizogenes were used. In particular, Vergauwe et al. (1996) compared 
different A. tumefaciens strains were used for A. annua genetic transformation and 
obtained regenerated plants on the medium with 0.05 mg/L naphthaleneacetic acid and 0.5 
mg/L N(6)-benzyladenine. This work was one of the first attempts at transgenic 
wormwood plant construction.  

Different biotechnological approaches increased artemisinin and endoperoxide 
sesquiterpene lactone content (Tang et al., 2014). This plant-produced compound is of 
great interest because of its use as an effective antimalarial drug. For instance, artemisinin 
biosynthesis enhancement was studied by downregulation of the β-caryophyllene synthase 
gene (Chen et al., 2011). Fu et al. (2021) detected that overexpression of blue light receptor 
AaCRY1 increased artemisinin content in transgenic plants. Heterologous expression of 
cyanobacterial PCS increased artemisinin content in A. annua hairy roots (Pandey et al., 
2021b). LIS promoter activity for artemisinin synthesis was analyzed (Wang et al., 2014). 
Overexpression of artemisinic aldehyde Δ11 (13) reductase gene enhanced artemisinin and 
its relative metabolite biosynthesis in transgenic plants (Yuan et al., 2015). It was studied 
that A. annua plants overexpressing a pleiotropic drug resistance transporter gene 
AaABCG40 showed higher artemisinin content (Fu et al., 2020). Transgenic plants that 
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carried the rol B gene showed a 1.2-12-fold increase in artemisinin, artesunate, and 
dihydroartemisinin content (Dilshad et al., 2015a). Transfer of the rol C gene also increased 
to artemisinin, artesunate, and dihydroartemisinin concentration. However, the level of 
synthesis under such conditions was lower than in the case of rol B gene use. Expression of 
β-glucosidase (Singh et al., 2016), HMG-CoA reductase gene (Aquil et al., 2009), 
cyanobacterial PCS (Pandey et al., 2021b), and AaWRKY1 (Han et al., 2014) affected 
artemisinin biosynthesis in transgenic plants and hairyroots.  

A. annua hairy roots were induced by the leaf treatment with the LBA 9402 strain 
of A. rhizogenes. These root cultures produced the sesquiterpenes artemisinic acid and 
arteannuin B. It should be noted that hairy roots were observed to regenerate 
spontaneously into plantlets on a hormone-free MS medium (Banerjee et al., 1997). Liu et 
al. (1998) obtained A. annua hairy roots and studied the dynamics of growth and 
biosynthesis of artemisinin. The dynamics of root growth in different culture systems were 
evaluated by Kim et al. (2003). Wang et al. (2009) studied hairy root culture and the effect 
of different compounds (cerebroside and nitric oxide) as elicitors for increasing 
artemisinin production. Weathers et al. (2004) obtained  A. annua hairy roots and studied 
the effect of sugars on growth. 

In our laboratory wormwood hairy roots were initiated after the transformation 
by leaves cocultivation with A. rhizogenes A4 wild strain and, in addition, bacteria carried 
plasmid with human interferon α2b gene were used (Drobot et al., 2016a; Matvieieva, 
2015) (Fig. 38). 

 
Artemisia absinthium L. (wormwood, grand wormwood, absinthe) (Fig. 39) is a 

perennial medicine plant. It synthesizes phytoncides and demonstrates insecticidal 
properties. The plants are used in anorexia and indigestion treatment. The aerial parts of 
the plants have anthelmintic, anti-cancer activity (Blagojević et al., 2006; Julio et al., 2017; 
Sultan et al., 2020; Mohammed, 2022). They accumulate antioxidants, can alleviate liver 
inflammation, demonstrate a reduction in cholesterol levels, etc (Batiha et al., 2020; 
Anibogwu et al., 2021; Lachenmeier, 2010). The plants are known as producers of thujone 
(Bach et al., 2016). A.absinthium extract is known to have antioxidant (Bora et al., 2011; 
Singh et al., 2011), immunomodulatory (Shahnazi et al., 2015), wound-healing (Boudjelal et 
al., 2020), anti-inflammatory, analgesic (Amrollahi et al., 2014), antitumor (Koyuncu, 
2018), antiulcer (Shafi et al., 2004), antibacterial, antifungal (Kordali et al., 2005; Obistioiu 
et al., 2014) activities, as well as neuroprotective (Bora and Sharma, 2011), 
hepatoprotective (Amat et al., 2010), hypoglycemic (Daradka et al., 2014) effects. Such a 
wide range of properties is related to the A. absinthium chemical composition. Such 
compounds as lactones, terpenoids, essential oils, organic acids, resins, tannins, and 
phenols were previously detected in the extracts of this plant (Batiha et al., 2020). For 
example, isolated dimeric guaianolides found in A. absinthium exhibited cytotoxic activity, 
inhibited cyclooxygenase-2, and had anti-HIV-1 protease activity (Turak A. et al., 2014). 

Nin et al. (1997) demonstrated the possibility of the genetic transformation of A. 
absinthium. Hairy roots were produced after cocultivation of the shoots with A. rhizogenes 
strains 1855 and LBA 9402. The obtained roots were characterized by a high growth rate 
and a 463-fold increase in dry weight after 28 days of cultivation in the medium 
supplemented with 40 g L-1 of sucrose. Using gas chromatography/mass spectrometry 
analysis the authors analyzed secondary metabolite content in the hairyroots – a mixture of 
50 compounds. 

In our laboratory A. absinthium hairy roots were obtained using A. rhizogenes with 
pCB124 plasmid (Olkhovska et al., 2021). Hairy roots (Fig. 39) were characterized by a 
higher phenolic content, particularly flavonoids (up to 4.784 ± 0.10 mg/g FW) compared to 
the control (3.861 ± 0.13 mg/g FW). Also, the extracts from transgenic roots demonstrated 
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higher antioxidant activity in the reaction with the DPPH reagent (EC50 = 3.657 mg) 
compared with extracts from the control plants (EC50 = 6,716 mg). 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37 – The hairy roots from the collection (Institute of Cell Biology and Genetic 
Engineering of the National Academy of Sciences of Ukraine) 
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Figure 38 – Artemisia annua hairy roots (Matvieieva et al., 2016) 
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 Figure 39 – Initiation of Artemisia absinthium hairy roots using A. rhizogenes and 

differences in growth rate (Olkhovska et al., 2021) 
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Artemisia tilesii Ledeb. known as Aleutian mugwort (Fig. 40) is a perennial herb 
of the Compositae family. These plants naturally grow in Japan, northern North America, 
and Alaska. It possesses resistance to different stress factors, for example, a range of pH 
and low temperature (Adams et al., 1984). These plants also are characterized by 
antirheumatic, disinfectant, deodorant, and anti-tumor effects. They are used in Alaska’s 
traditional medicine to treat fever, infection, tumors, arthritis and other joint pains, 
bleeding, congestion, and tuberculosis (Overfield et al., 1980; Griffin, 2001). Unfortunately, 
studies of these fascinating plants are practically not carried out. However, our laboratory 
has been studying these plants as an object for biotechnological experiments for more than 
ten years. In particular, we have created a collection of hairy roots of plants of this species 
and are conducting comprehensive studies of the bioactivity of the extracts (Matvieieva et 
al., 2016;   Matvieieva et al., 2020). 

We were the first to obtain Aleutian mugwort hairy roots (Matvieieva et al., 2016) 
by an efficient and rapid protocol. Leaf explants were cocultivated with A. rhizogenes A4 
wild strain or A. rhizogenes carrying the plasmids with nptII and ifn-α2b genes. Root 
formation on the explants started in 5–6 days after their cocultivation with bacterial 
suspension. These root cultures were used in different experiments to study of 
peculiarities of their growth (growth rate), accumulation of bioactive compounds (Duplij, 
Matvieieva, 2019; Matvieieva et al., 2020), resistance to stress factors (Matvieieva et al., 
2019b) and possibility of nanoparticles synthesis (Kobylinska et al., 2022). 

 
Lactuca sativa L. (lettuce) is the most often grown leaf vegetable. It is low-calorie 

and low-fat, but rich in fiber and essential minerals (Kim et al., 2016). Lettuce is also a 
source of various phytochemicals. Such compounds as glycosylated flavonoids, phenolic 
acids, the vitamins A, B, and K, ascorbic acid, tocopherols, and sesquiterpene lactones 
lactucin and lactucopicrin were identified in the plants (Assefa et al., 2019; Bahorun et al., 
2004; Becker et al., 2015; Bunning et al., 2009; Chun et al., Damon et al., 2005; Liu et al., 
2007; Yang et al., 2018). These components are nutritional bioactive compounds. Lettuce 
plants possess different health-beneficial properties due to the synthesis of these 
secondary metabolites. For example, lettuce demonstrated anti-inflammatory, anti-
diabetic, anti-depressant, anti-coagulant, anticancer, antimalarial, and radical scavenging 
activity (Adesso et al., 2016; Gan et al., 2016; Bischoff et al., 2004; Blasco et al., 2008; Cheng 
et al., 2014; Gopal et al., 2017; Ismail et al., 2015; Yang et al., 2022). 

Ismail et al. (2019a, b) studied the effect of the genetic transformation and bacterial 
rol gene transfer on the secondary metabolism of lettuce plants. They found the differences 
between untransformed lettuce and the plants transformed with rolABC or rolC genes. For 
instance, ferulic acid levels increased 3033-9777%, aminooxononanoic acid increased 
1141-1803%, and 2,3,5,4'tetrahydroxystilbene-2-O-β-d-glucoside increased 40,272-
48,008%. The plants transformed by rolABC genes (Ismail et al., 2017) also significantly 
differed from the mother plants in their bioactivity. In particular, the transformed plants 
showed 91-102 % and 53-65 % increase in total phenolic and flavonoid contents compared 
to untransformed plants. The total antioxidant and reducing activity also increased in the 
transformed plants. The authors studied the enhanced antidepressant and anticoagulant 
potential of these plants compared to the control. 

We obtained lettuce hairy roots after the transformation by Agrobacterium 
rhizogenes with the human interferon α2b gene (Fig. 41) and studied the possibility of 
plant regeneration from these roots (Matveeva et al., 2012a). The regenerated plants 
differed from the plants of wild type by elongated internodes, early flower-bearing stem 
formation, and purple coloration of leaves. The transgenic root extracts demonstrated 
antiviral activity of 1620...5400 IU (Matveeva et al., 2012b). 
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Figure 40 – Artemisia tilesii hairy roots (Matvieieva et al., 2016) 
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Figure 41 – Lactuca sativa hairy roots and regenerated plants 
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Artemisia vulgaris L., or common mugwort plants are native to different regions 
(Europe, Asia, and North Africa) and naturalized in North America. The plants are used as 
raw material due to the synthesis of different bioactive compounds: essential oil, 
flavonoids, and sesquiterpenoids lactones, including artemisinin (Lee et al., 1998; Tigno et 
al., 2000; Blagojević et al. 2006; Judžentien et al. 2006; Natividad et al., 2011; Abad et al., 
2012; Abiri et al., 2018; Madhav et al., 2018; Numonov et al., 2019; Nganthoi et al., 2019; 
Malik et al., 2019).  

It is listed in the European Pharmacopoeia and is used in traditional Chinese, Hindu, 
and European medicine. The plant extracts are known for their antioxidant, 
hepatoprotective, antihyperlipidemic, antimalarial, anti-inflammatory, antispasmolytic, 
antinociceptive, estrogenic, cytotoxic, antispasmodic and bronchodilator, antibacterial, 
larvicidal, and antifungal effects (Lee et al., 1998; Gilani et al., 2005; Temraz et al., 2008; 
Pires et al., 2009; Khan et al., 2009; Erel et al., 2011; Kodippili et al., 2011; Hiremath et al., 
2011; Raj Singh et al., 2011; Govindaraj et al., 2013; Afsar et al., 2013; Obistioiu et al., 2014; 
Saleh et al., 2014; Khan, 2015; El-Tantawy et al., 2015; Oyedemi et al., 2015; Ekiert et al., 
2020; Ben Nasr et al., 2020; Pandey et al., 2021). The plants were studied as a potential 
source of antioxidant phenolic compounds (Melguizo-Melguizo et al., 2020). European 
French Pharmacopoeias listed these plants as a possible homeopathic raw material. 

Various aspects of the use of A. vulgaris plants in biotechnological research have 
been identified. In particular, the conditions under which the regeneration of shoots of 
these plants in vitro was studied (Borzabad et al., 2020).  

A methodology for the genetic transformation of wormwood plants has been 
developed. For example, four A. rhizogenes strains were used for the genetic 
transformation of A. vulgaris (Sujatha et al., 2013). The authors studied the potential of 
different kinds of explants (hoot tip, leaf, and node) for hairyroots obtaining. The A4GUS 
strain was more competent for this purpose. Its application for leaf explant transformation 
allowed initiating hairy roots with the highest transformation rate (92.6%). Four media 
compositions based on the ½MS medium were compared for biomass production. Effect of 
growth conditions (the composition of the culture medium, addition of Farnesyl 
Diphosphate precursor and vitamins) on initiated hairy roots growth index was evaluated 
(Balasubramani et al., 2021).  

In our laboratory, the transformation was carried out by a wild strain of 
Agrobacterium rhizogenes A4 and agrobacteria carrying the human interferon-a2b (ifn-
a2b) gene. Lines of transgenic roots of A. vulgaris differed significantly in the content of 
biologically active compounds: artemisinin (0.237–1.020 and 0.687 mg/g of dry weight, 
respectively, in transgenic lines and control) and fructans (32–136 and 264 mg/g of dry 
weight, respectively, in transgenic lines and controls).  

These data confirmed that the method of A. rhizogenes-mediated transformation can 
produce transgenic roots of A. vulgaris with an increased content of artemisinin, a 
compound with antimalarial properties. (Drobot et al., 2017; Matvieieva et al., 2019a) (Fig. 
42).  

The content of artemisinin and fructans in the transgenic roots of A. vulgaris, SOD, 
and the antioxidant activity (AOA) of extracts of these roots were determined (Drobot et al., 
2015; Drobot et al., 2016b, in Ukrainian).  

The roots from the collection were used for metal nanoparticles obtaining. The 
ethanol extracts, reach in flavonoids, addition to the AgNO3 solution resulted in silver 
nanoparticles (AgNPs) synthesis (Kobylinska et al., 2020). The extracts were also used for 
magnetic Fe nanoparticles obtaining (Kobylinska et al., 2022). 

The peculiarities of the synthesized silver nanoparticles, as well as magnetic 
nanoparticles (physical characteristics, bioactivity), were studied (Kobylinska et al., 2020; 
Kobylinska et al., 2022). 
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Figure 42 – Artemisia vulgaris  hairy roots 
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Artemisia ludoviciana L., known as silver wormwood, or Louisiana wormwood, 
is a rhizomatous perennial plant, native to North America. It is cultivated as an ornamental 
plant. This species has been medicinally used in Mexico since pre-Columbian times, and is 
popularly known by names such as “estafiate”, “istafiate” “ambfe”, “ajenjo” and “artemisia”, 
among others. The plants are used in traditional medicine for the treatment of 
inflammation, bronchitis, and digestive ailments such as gastritis (Esquivel-García et al., 
2018; Nicholson et al., 1991; Mata et al., 2019; Alonso-Castro et al., 2017). Aboriginal 
Australians used them to treat dermatology problems (Hellson, 1974). A. ludoviciana 
extracts were tested as a drug against gastritis initiated by Helicobacter pylori (Palacios-
Espinosa et al., 2021). Gastroprotection, as well as anti-inflammatory effects, were studied. 
Estafiatin and eupatilin were isolated and exhibited anti-H. pylori. The plants demonstrated 
antimicrobial and antioxidant activity (Lopes-Lutz et al., 2008; Jimenez-Arellanes et al., 
2003). It is also active against Vibrio cholerae (Garcia et al., 2006) and possesses 
antiprotozoal activity (Fernández et al., 2005). 

Presently, there are only a few publications on the study of the biological 
characteristics of plants of this species, and there are no publications on genetic 
transformation. That is why the recent article of Sánchez-Ramos et al. (2022) attracts 
attention. The authors studied achillin production in A. ludoviciana in different conditions 
(photoperiod and darkness conditions). They used MS medium with 0.1 mg/L of kinetin or 
benzyl amino purine and/or naphthaleneacetic acid, 2,4-dichlorophenoxyacetic acid, 
indole-3-acetic acid and 4-amino-3,5,6-trichloro-2-pyridine carboxylic acid at 0.1 and 1.0 
mg/L for callus induction. GC-MS analysis showed higher achillin content (1703.05 µg/mL) 
in leaf calluses with PIC (1.0) and KIN (0.1) under photoperiod, and in node plantlets 
(1880.01 µg/mL) with PIC (0.1) and BAP (0.1). For the first time, we performed the genetic 
transformation of plants of this species using A. rhizogenes and obtained hairy roots with 
the human interferon-α2b gene (unpublished results, Fig. 43). 

  
Artemisia dracunculus L. (tarragon) is widespread throughout the world 

perennial plant and also grows in Ukraine (Boiko, 2013). The use of A. dracunculus was 
mentioned in ancient Greece. Plants are known to synthesize high amounts of essential oil. 
So tarragon is used in folk medicine, cosmetics, and cuisine.  

Flavonoids, coumarins, phenylpropanoids, and terpenes determine the 
antimicrobial, antiviral, antifungal, and antioxidant activities of A. dracunculus. Such a 
broad spectrum of biological activities could cause tarragon`s use in the pharmaceutical 
industry for the treatment of diseases such as inflammation, hepatitis, and different kind of 
infections (bacterial, viral) (Eidi et al., 2016; Mohsenzadeh, 2007; O’Mahony et al., 2005; 
Obistioiu et al., 2014). Leaves of A. dracunculus accumulate artemisinin up to 0.27% 
(Mannan et al., 2010). Studies of A. dracunculus were devoted to plant micropropagation, 
and medicine compound accumulation (Fernández-Lizarazo et al., 2012; Obolskiy et al., 
2011).  

In our laboratory, we studied (Drobot et al., 2016c) the possibility of A. dracunculus 
genetic transformation (Fig. 44). We obtained the transgenic hairy root cultures using A. 
rhizogenes A4 – mediated transformation. It was shown that leaves of in vitro cultivated 
plants were the optimal type of explants. The transgenic root formation frequency was up 
to 20% in the case of leaf usage. The time of explants and bacteria cocultivation had a 
crucial effect on the frequency of transgenic root formation. The optimal time of explant 
cultivation on the medium without cefotaxim for agrobacterial gene transfer into plant 
cells appeared to be four days. Prolongation of this term has led to explants' death while 
reducing was not successful for root obtaining. Roots were formed on the 7th day after 
cocultivation with bacterial suspension on leaf explants. Transgenic root lines differed in 
morphological features and growth rate. 
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Figure 43 – Artemisia ludoviciana hairy roots 
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Figure 44 – Artemisia dracunculus hairy roots 
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Althaea officinalis L., or marshmallow, is a perennial medicinal plant from the 
Malvaceae family. The plant originates in India but is now widespread in Europe, America, 
Asia, and North Africa. A. officinalis has long been used as a medicinal plant because it has 
antiseptic, antioxidant, antimicrobial, anti-inflammatory, and gastroprotective properties. 
A. officinalis preparations (powder, aqueous infusion, liquid extract, syrup) are used for 
diarrhea, acute gastritis, enterocolitis, and as an expectorant for catarrhal conditions of the 
respiratory tract. It is also used for asthma treatment. Althea roots contain up to 35% of 
mucous substances, which determine the healing properties of the plant, as well as starch 
(up to 37%), sucrose (10.2%), betaine (up to 4%), and fatty oil (up to 1.7%), astragalin, 
mucopolysaccharides, arabinofuranan, caffeic acid, chicory, coumarin and coumarin acid, 
diosmetin, kaempferol, luteolin, quercetin, scopolin (Shah et al., 2011).  

Sadighara et al. (2012) studied the dependence of antioxidant activity and flavonoid 
content on flower color. Flavonoid content was highest in white flowers. Root extracts of A. 
officinalis protected human macrophages against H2O2-induced cytotoxicity and H2O2-
induced ROS production (Bonaterra et al., 2020). Thus, they demonstrated antioxidant and 
anti-inflammatory activity. Xue et al. (2022) found that A. officinalis extracts are potent 
antioxidants and possess high α-glucosidase, 5-lipoxygenase, and nitric oxide inhibitory 
activities. Rat treatment with the plant extract significantly increased serum HDL 
cholesterol levels without effects on stool cholesterol and triacylglycerol (Hage-Sleiman et 
al., 2011). A general decrease in liver enzyme activities and an inhibition of inflammation 
were observed in this study. 

hairyroots of A. officinalis were produced using A. rhizogenes (Drake et al., 2013). 
The authors obtained wild-type lines and the roots expressing the cyanovirin-N (CV-N). 
Different A. rhizogenes strains (A4, A13, ATCC15834, and ATCC 15834(GUS)) were used for 
marshmallow hairyroot induction (Tavassoli & Safipour Afshar, 2018). In our study 
(Matvieieva et al., 2013) hairyroots were obtained using A. rhizogenes A4 carried pCB161 
plasmid with human interferon-α2b gene (Fig. 45). The clones of transgenic roots differed 
in mass increment from 0, 036 ± 0,008 up to 0,371 ± 0,019 g in 30 days of cultivation and 
fructan synthesis (from 67,2± 4,47 up to 154,6 ± 6,62 mg/g roots dry weight). Extracts 
from hairyroots were characterized by high antiviral activity against vesicular stomatitis 
virus – up to 26 000 IU/ g of roots fresh weight.  

Bidens pilosa L. (beggartick, Spanish needles, devil needles, black jack) is an 
annual plant native to the South American region and distributed in most pantropical areas 
of the world. Native Amazonians, Australians, and Hawaiians used the plants as edible ones 
and herbal tea. In Africa, plants are used in folk medicine for human health (Orech et al., 
2007). Different constituents (polyacetylenes, polyacetylene glycosides, flavonoids, flavone 
glycosides, essential oils, chalcones, okanin glycosides, phenolic acids, terpenes, fatty acids, 
and phytosterols) were identified in B. pilosa plants (Xuan et al., 2016; Silva et al., 2011; 
Chang et al., 2000; Khanh et al., 2009; Priestap, Bennett, 2008; Zhao et al., 2004; Lee et al., 
2008). Due to the synthesis of these compounds, B. pilosa plants have anti-inflammatory, 
anti-diabetic, antihyperglycemic, chemopreventive, antimalarial, and antibacterial activity 
(Yan et al., 2022; Ubillas et al., 2000; Chiang et al., 2007; Chang et al., 2004; Xin et al., 2021; 
Chien et al., 2009; Tobinaga et al., 2009; Chiang et al., 2004; Oliveira et al., 2004; Deba et al., 
2008). The leaf extract is also used to cure malaria, stomach and mouth ulcers, and 
diarrhea (Subhuti, 2013). The herbicidal and fungicidal activities of the plants were studied 
(Deba et al., 2007). 

B. pilosa hairy roots (Fig. 46) were obtained firstly using A. rhizogenes A4 carried 
pCB124 plasmid with human interferon-α2b gene (Matvieieva et al., 2015a). The extracts 
possessed antiviral activity 1620...5400 IU/g weight. 
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  Figure 45 – Morphological differences in Althaea officinalis hairy roots (Matvieieva 

et al., 2013) 
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Figure 46 – Bidens pilosa hairy roots  
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Cichorium intybus L., or common chicory, is a perennial herb from the Cichorium 
genus, Asteraceae family. The plants are cultivated worldwide. Chicory is used in the food 
industry as a salad, for teas and tea blends, for coffee supplementation, and as a source for 
inulin production (Twargowska et al., 2022). Polyphenols, inulin, oligofructose, and 
sesquiterpene lactones are present in chicory plants (Dalar et al., 2014; Perovic et al., 
2021).  

This plant exhibits anti-inflammatory, immunostimulatory, antioxidant, antiulcer, 
antitumor, and cardiotonic activity and is used to treat diabetes and other diseases (Ki et 
al., 1999; Gadgoli et al., 1997; Ahmad et al., 1998; Hughes et al., 2001; Monde et al., 1990; 
Azay-Milhau et al., 2013).  

Chicory has a high ability for plant regeneration from various explants. This process 
has been studied for more than 50 years. For example, leaves  (Rehman et al., 2003; Mei et 
al., 2004; Yucesan et al., 2007; Velayutham et al., 2007; Profumo et al., 1985) and roots 
(Velayutham et al., 2007; Profumo et al., 1985) can be used as explant material for the 
production of chicory plants.  

We have previously demonstrated that the regeneration frequency of plants (cv. 
Palla rossa) from cotyledons was 100% (Matvieieva et al., 2009). Plant regeneration is 
possible through callus formation (Velayutham et al., 2007; Caffaro et al., 1982), embryos 
(Sidikou-Seynie et al., 1992; Heirwegh et al., 1985), as well as direct regeneration 
(Matvieieva et al., 2009; Velayutham et al., 2003). To regenerate plants in in vitro culture, 
the following growth regulators are used: Kinetin (Profumo et al., 1985), α-
Naphthalenacetic Acid (NAA) and 2-Isopentenyl Adenine (Sidikou-Seynie et al., 1992), 
Kinetin and Indole-3-Acetic Acid, Kinetin, and NAA, 6-Benzylaminopurine and IAA, BA and 
NAA, Thidiazuron and IAA, etc. (Rehman et al., 2003; Yucesan et al., 2007; Nenz et al., 
2000).  

High-efficient transgenic hairy root induction in chicory was demonstrated 
(Kabirnataj et al., 2016). Conditions of hairyroot initiation were optimized (Fathi et al., 
2019). Malarz et al. (2013) constructed chicory hairyroots and studied them as a source of 
hydroxycinnamates and 8-deoxylactucin glucoside. The content of these compounds in the 
root biomass reached 1.5 - 5.5 % of dry weight. Bernard et al. (2020) evaluated the 
accumulation of 3,5-diCQA in hairyroots potent antioxidant and antibacterial compound. In 
2023 was published an article that studied chicory hairy roots produced sesquiterpene 
lactones and polyphenols as a platform for compound synthesis with antimicrobial activity 
(Häkkinen et al., 2023). 

We obtained chicory hairy root cultures (Fig. 47). In our study, transgenic plants 
carrying either ifn-α2b gene encoding human interferon or esxA::fbpBΔTMD genes encoding 
Mycobacterium tuberculosis antigens ESAT6 and Ag85B were regenerated from the hairy 
roots (Matvieieva et al., 2011; Matvieieva et al., 2015b).  

The direct shoot regeneration from transgenic roots without a callus formation 
phase was observed on a regulator-free nutrient medium. Direct shoot regeneration 
without callus formation was observed in one month of transgenic  root cultivation on a 
selective medium. The shoots were characterized by normal for chicory plants phenotype, 
rooted on 1/2MS medium and formed flowers in vitro and in the soil. These plants 
regenerated from hairyroots had a transferred bacterial rol B gene, as well as a human α2b-
interferon gene and a selective nptII gene. The transgenes transfer and transcription in the 
hairyroots and plants were confirmed by the results of RT-PCR and PCR analyses.   

The collection of C. intybus hairy roots includes the samples that differ in growth 
fate, color, the possibility of direct shoots regeneration from hairyroots, biological activity 
(antioxidant, reducing, and anti-inflammatory), the content of carbohydrates, flavonoids, 
artemisinin, inulin. 

 

DOI: https://doi.org/10.15414/2023.9788055226408

https://doi.org/10.15414/2023.9788055226408


 
 

95 

 

 
 

 
Figure 47 – Cichorium intybus hairy roots and regenerated plants  
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Ruta graveolens L., or rue plants are native to the Balcan Peninsula region. The 
plants are cultivated as culinary herbs and as insect repellent. They synthesize coumarins, 
flavonoids, furanocoumarins, and alkaloids (Oliva et al., 2003). Extracts from R. graveolens 
have been used in the treatment of infections, inflammations, and eczema  (Wink, 1998).  

Rutin, alkaloids, essential oils, and other chemicals were found in aerial parts and 
roots (Orlita et al., 2008; Ekiert et al., 2005; Orlanda et al., 2015; Meepagala et al., 2005). 
Rue extracts possess antimicrobial (Orlanda et al., 2015; Ivanova et al., 2005), antifungal 
(Meepagala et al., 2005), and analgesic (Cunha et al., 2015) activity. The antioxidant and 
anti-inflammatory properties of R. graveolens were evaluated (Motamed et al., 2014; 
Raghav et al., 2006). A study of anti-tumor activity demonstrated that rue extracts were 
found to be cytotoxic for lymphoma and carcinoma cells (Preethi et al., 2006).  Etanolic rue 
extracts showed no toxicity but caused the death of skin melanoma cells (Ghosh et al., 
2015). Thus, R. graveolens plants could be used as a natural source for medical compound 
production and possible applications in the pharmaceutical industry.  

Hairy root cultures were established after inoculation of hypocotyls with wild 
A.rhizogenes strain LBA 9402 (Sidwa-Gorycka et al., 2009). The authors identified GC and 
GC-MS coumarins, furanocoumarins, and alkaloids and compared their content with those 
present in in vitro shoot cultures. The level of pinnarin and rutacultin, bergapten, 
isopimpinelin. and xanthotoxin was approximately twofold higher in hairy root than in 
shoot cultures.  

 Hairy roots of R. graveolens were constructed using A. rhizogenes strain A4 
(Matvieieva et al., 2015c). Transformation frequency (TF) was found to be 2 % and 3 % in 
the case of internodes and leaves using, respectively. This parameter depended on the type 
of explant and the time of its cultivation on the medium without cefotaxime. The 
prolongation of this period has led to TF increasing (Drobot et al, 2016a). 

An efficient R. graveolens L. shoot regeneration protocol has been developed 
(Matvieieva, Shakhovsky, 2017). MS media supplemented with 3% sucrose, Kinetin, 6-
Benzylaminopurine (BA), and α-Naphthylacetic acid (NAA) growth regulators were used to 
find out the regeneration ability of intermodal, root, petiole, and leaf explants. The adding 
BA in concentration 0.5 mg L-1 promoted regeneration from petioles, roots, and internodes 
with 100% frequency. The high shoot regeneration frequency was also observed when the 
explants were cultivated on the MS basal medium with BA (0.5-1.0 mg L-1) and NAA (0.05-
0.5 mg L-1) (Fig. 48). 

 
 

 
 

 
Figure 48 – Initiation of Ruta graveolens hairy roots using A. rhizogenes: in vitro 

cultivated plants (a), roots formation on the explants (b), hairy roots growth (c) 
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Artemisia balchanorum Krasch (tarragon lemon) is a perennial shrub endemic to 
Turkmenistan, found in mountainous areas. The plant is rich in vitamin C. The citral isolated 
from the plant is used in pharmaceuticals for vitamin A synthesis. The plants also accumulated 
an essential oil with a citrus aroma. These plants synthesize sabinene, myrcene, thujone, 
linalool, nerol, neral, geraniol, and other valuable compounds. We introduced these plants into 
in vitro culture and investigated the possibility of genetic transformation. Transformed roots 
that had the interferon gene were obtained. The starting plants were obtained from L. 
Svydenko, Novo-Kakhovskaya Research Station, Ukraine. We also performed the genetic 
transformation of the plants using A. rhizogenes and produced hairy roots with the human 
interferon-α2b gene (unpublished results, Fig. 49). 

 Tragopogon porrifolius L., or common salsify, oyster plant, vegetable oyster, 
and Jerusalem star, belongs to the Asteraceae family. It is an annual or biennial plant. The 
plants are cultivated for their ornamental flowers and edible roots. T. porrifolius ethanol 
extract showed a high level of antioxidant activity and inhibitory activity for α-glucosidase 
and α-amylase. The extract exhibited antimicrobial activity in the concentration range of 
0.039–2.5 mg/ml and the anticancer effect in the treatment of MDA-MB-231 breast cancer 
cells (Nuraniye Eruygur et al., 2020). The plants are used in folk medicine (Ozlem et al., 
2013). T. porrifolius accumulates monounsaturated fatty acids, essential fatty acids, 
vitamins, and polyphenol components (Formisano et al., 2010; Sareedenchai et al., 2009). 
The extracts also possessed hepatoprotective activity (Tenkerian et al., 2015). 

We transformed the plants using A. rhizogenes A4 wild strain and bacteria carried 
the pCB161 vector with the target human interferon–α2b gene (Fig. 50). In 10-14 days 
after transformation with the wild strain of A. rhizogenes root formation at a frequency of 
59.4% was observed. In the case of using A. rhizogenes carrying pCB161 vector root 
formation incidence was 37.5% (Matvieieva, 2012b).  

 

 
Figure 49 – Initiation of  Artemisia balchanorum hairy roots: in vitro cultivated 

plants (a), roots formation on the explants (b), hairy roots growth (c) 
 

 
 Figure 50 – Initiation of Tragopogon porrifolius hairy roots using A. rhizogenes 

(Matvieieva, 2012): in vitro cultivated plants (a), roots formation on the explants (b), hairy 
roots growth (c) 
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3.16. Bioactivity of hairy roots from the collection of icbge nas of ukraine in diagrams 
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4. CONCLUSIONS

Using knowledge of the natural processes of interaction between plants and 
bacteria, researchers found the possibility to create new organisms that have improved 
their qualities, in particular, can synthesize valuable biologically active compounds. Such 
new organisms, specifically hairy roots, can be used for human benefit.  

The book provides detailed information on the synthesis of biologically active 
compounds in the roots of plants of various species and demonstrates the possibility of 
increasing their functional potential. We hope this knowledge will help students in their 
education and open modern horizons of biotechnology for the readers as an advanced 
science of the 21st century for experts in other fields. 

The results of our study for nearly 20 years are presented in this book. They 
demonstrated the possibility of Agrobacterium rhizogenes used for the genetic 
transformation of different medicinal plants (Artemisia vulgaris, A. annua, A. dracunculus, A. 
absinthium, A. tilesii, A. ludoviciana, A. balchanorum, Bidens pilosa, Cichorium intybus, 
Althaea officinalis, Tragopogon porrifolius, Lactica sativa, Ruta graveolens) for hairy roots 
obtaining. 

The short time cocultivation of the explants (leaves, internodes, roots) has led to the 
initiation of the root formation. The bacterial genes (rol B and rol C) incorporation in plant 
cells was proved by PCR analysis using primers specific to these genes. The obtained hairy 
roots were successfully cultivated over a long period and were characterized by significant 
differences in their morphology and biochemical parameters.  

It was studied that the transformation and bacterial gene transfer affect plant cell 
metabolism. This influence was expressed in changes in the synthesis of various 
components inherent in the mother plants (flavonoids, polyphenols, polysaccharides, etc.). 
It has been proved that it is possible to influence this metabolism by changing the 
cultivation conditions, in particular, varying the composition of the nutrient medium.  

Such studies on a large number of collection samples (about 100 samples) and using 
the hairy roots of plants of various species have undeniably proved the significant influence 
of Agrobacterium rhizogenes on the metabolism and functioning of plant cells. Such 
fundamental research can become the basis for the recommendations regarding their 
practical application. It was proved by obtaining hairy roots of medicinal plants with high 
(much more than the control) levels of synthesis of valuable compounds that have 
antioxidant, antiradical, DNA-protective, and antiviral properties. Based on previously 
developed methods of hairy root cultivation in bioreactors, it is possible to assert 
prominent prospects for hairy roots of medicinal plants as natural biofactories for valuable 
compound production. They can be used in the pharmaceutical industry to develop safe 
drugs from natural plant raw materials.    
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